Title | Electronic properties of (111) surface in crystals of A2B6 type |
Publication Type | Journal Article |
Year of Publication | 2014 |
Authors | Zubkova, SM, Rusina, LN |
Abbreviated Key Title | Dopov. Nac. akad. nauk Ukr. |
DOI | 10.15407/dopovidi2014.01.072 |
Issue | 1 |
Section | Physics |
Pagination | 72-80 |
Date Published | 1/2014 |
Language | Russian |
Abstract | Electronic band structure, local densities of states (total and layer-resolved ones), and the distribution of a charge density of valence electrons (3D-graphics and contour cards) at the (111) polar surface in ZnTe, ZnS, CdTe crystals have been studied. The properties of anion- and cation-terminated surfaces have been analyzed separately. The self-consistent three-dimensional pseudopotential method has been used for numerical calculations in the framework of a model of layered superlattice. The application of an original iterator in the self-consistent procedure allowed the difficulties associated with the surface-induced presence of reciprocal-lattice vectors shorter than 1 a. u. to be overcome. |
Keywords | crystals, electronic properties, surface |
1. Zenguil E. Surface physics. Moscow: Mir, 1990 (in Russian).
2. Oura K., Lifshyts V. G., Saranin A. A. et al. Introduction to surface physics. Moscow: Nauka, 2006 (in Russian).
3. Takahashi T., Ebina A. Appl. of Surface Sci., 1982, 11-12: 268–271. https://doi.org/10.1016/0378-5963(82)90074-5
4. Jin Li, Geyles J., Kioussis N. et al. J. Electr. Mater., 2012, 41, No. 10: 2745–2753. https://doi.org/10.1007/s11664-012-1924-x
5. Wang Y. R., Duke C. B. Phys. Rev., 1987, B36, No. 5: 2763–2769. https://doi.org/10.1103/PhysRevB.36.2763
6. Ferraz F. C., Watari K., Alves J. L. A. Surface Sci., 1994, B307–309: 959–962.
7. Stankiewicz B., Jurczyszyn L., Kucharczyk R., Steslicka M. Czechosl. J. of Phys., 1997, 47, No. 4: 473–479. https://doi.org/10.1023/A:1021227727081
8. Ban Da-Yan, Zhang Hai-Feng, Li Yong-Pings et al. Acta Phys. Sinica, 1996, 45, Iss. 9: 1526–1535.
9. Schluter M., Chelicowsky J. R., Louie S. G., Cohen M. L. Phys. Rev., 1975, B12, No. 10: 4200–4214. https://doi.org/10.1103/PhysRevB.12.4200
10. Gorkavenko T. V., Zubkova S. M., Makara V. A. et al. Ukr. fiz. zhurn., 2011, 56, No. 2: 148–158 (in Ukrainian).
11. Kulkova S. E., Eremeev S. V., Postnikov A. V. et al. Fizika i tekhika poluprovodnikov, 2007, 41, No. 2: 832–839 (in Russian).
12. Christensen N. E., Salpathy S., Pawlowska Z. Phys. Rev., 1987, B36, No. 2: 1032–1050. https://doi.org/10.1103/PhysRevB.36.1032
13. Katnani A. D., Chadi D. J. Phys. Rev., 1985, B31: 2554–2556. https://doi.org/10.1103/PhysRevB.31.2554
14. Tong S. Y., Xu G., Hu W. Y., Puga M.W. J. Vac. Sci. Technol., 1985, B3, No. 4: 1076–1078. https://doi.org/10.1116/1.583054
15. Katnani A. D., Sang H. W., Chiaradia P., Bauer R. S. J. Vac. Sci. Technol., 1985, B3, No. 2: 608–612. https://doi.org/10.1116/1.583147