Electronic properties of (111) surface in crystals of A2B6 type

TitleElectronic properties of (111) surface in crystals of A2B6 type
Publication TypeJournal Article
Year of Publication2014
AuthorsZubkova, SM, Rusina, LN
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2014.01.072
Issue1
SectionPhysics
Pagination72-80
Date Published1/2014
LanguageRussian
Abstract

Electronic band structure, local densities of states (total and layer-resolved ones), and the distribution of a charge density of valence electrons (3D-graphics and contour cards) at the (111) polar surface in ZnTe, ZnS, CdTe crystals have been studied. The properties of anion- and cation-terminated surfaces have been analyzed separately. The self-consistent three-dimensional pseudopotential method has been used for numerical calculations in the framework of a model of layered superlattice. The application of an original iterator in the self-consistent procedure allowed the difficulties associated with the surface-induced presence of reciprocal-lattice vectors shorter than 1 a. u. to be overcome.

Keywordscrystals, electronic properties, surface
References: 

1. Zenguil E. Surface physics. Moscow: Mir, 1990 (in Russian).
2. Oura K., Lifshyts V. G., Saranin A. A. et al. Introduction to surface physics. Moscow: Nauka, 2006 (in Russian).
3. Takahashi T., Ebina A. Appl. of Surface Sci., 1982, 11-12: 268–271. https://doi.org/10.1016/0378-5963(82)90074-5
4. Jin Li, Geyles J., Kioussis N. et al. J. Electr. Mater., 2012, 41, No. 10: 2745–2753. https://doi.org/10.1007/s11664-012-1924-x
5. Wang Y. R., Duke C. B. Phys. Rev., 1987, B36, No. 5: 2763–2769. https://doi.org/10.1103/PhysRevB.36.2763
6. Ferraz F. C., Watari K., Alves J. L. A. Surface Sci., 1994, B307–309: 959–962.
7. Stankiewicz B., Jurczyszyn L., Kucharczyk R., Steslicka M. Czechosl. J. of Phys., 1997, 47, No. 4: 473–479. https://doi.org/10.1023/A:1021227727081
8. Ban Da-Yan, Zhang Hai-Feng, Li Yong-Pings et al. Acta Phys. Sinica, 1996, 45, Iss. 9: 1526–1535.
9. Schluter M., Chelicowsky J. R., Louie S. G., Cohen M. L. Phys. Rev., 1975, B12, No. 10: 4200–4214. https://doi.org/10.1103/PhysRevB.12.4200
10. Gorkavenko T. V., Zubkova S. M., Makara V. A. et al. Ukr. fiz. zhurn., 2011, 56, No. 2: 148–158 (in Ukrainian).
11. Kulkova S. E., Eremeev S. V., Postnikov A. V. et al. Fizika i tekhika poluprovodnikov, 2007, 41, No. 2: 832–839 (in Russian).
12. Christensen N. E., Salpathy S., Pawlowska Z. Phys. Rev., 1987, B36, No. 2: 1032–1050. https://doi.org/10.1103/PhysRevB.36.1032
13. Katnani A. D., Chadi D. J. Phys. Rev., 1985, B31: 2554–2556. https://doi.org/10.1103/PhysRevB.31.2554
14. Tong S. Y., Xu G., Hu W. Y., Puga M.W. J. Vac. Sci. Technol., 1985, B3, No. 4: 1076–1078. https://doi.org/10.1116/1.583054
15. Katnani A. D., Sang H. W., Chiaradia P., Bauer R. S. J. Vac. Sci. Technol., 1985, B3, No. 2: 608–612. https://doi.org/10.1116/1.583147