1Gorobets, MI 1Kirillov, SA 2Gafurov, MM 3Ataev, MB 3Tretyakov, DO 1Inter-Agency Department of Electrochemical Energy Systems of the NAS of Ukrain, Kyiv 2H. I. Amirkhanov Institute of Physics, Dagestan Scientific Center of the Russian Academy of Sciences , Makhachkala, Russia 3Analytical Center of Collective Use, Dagestan Scientific Centre of the Russian Academy of Sciences, Makhachkala, Russia |
Dopov. Nac. akad. nauk Ukr. 2014, 1:125-129 |
https://doi.org/10.15407/dopovidi2014.01.125 |
Section: Chemistry |
Language: Russian |
Abstract: Ionic equilibria in theLiClO4 – dimethylsulfoxide (DMSO) system at 90 ºC in a concentration range from 5 to 25% mole fractions of a salt have been investigated by means of Raman spectroscopy. Spectroscopic manifestations of hydrogen bonds between molecules of DMSO and ClO4− ions were detected. Concentrations of monomeric, dimeric, and solvating DMSO molecules; free solvent molecules and those included in the ClO4− ion solvation sphere; free anions, ion pairs, separated by a solvent, and contact ion pairs are identified. Conclusions have been made about the composition of all components of solutions. |
Keywords: association, ion solvation, LiClO4 – dimethylsulfoxide |
1. Gores H. J., Barthel J., Zugmann S. et al. Liquid nonaqueous electrolytes. In: Daniel C., Besenhard J. O. (Eds.). Handbook of battery materials. Second Edition. Weinheim: Wiley-VCH, 2011: 525–626. https://doi.org/10.1002/9783527637188.ch17
2. Perelygin I. S. Infra-red spectra and solvation of ions. In: Krestov G. A. (Ed.). Ionic solvation. Chichester: Ellis Horwood, 1994: 100–207.
3. Alía J. M. Raman spectroscopic studies of ion-ion interactions in aqueous and nonaqueous electrolyte solutions. In: Lewis I. R., Edwards H. G. M. (Eds.). Handbook of Raman spectroscopy, from the research laboratory to the process line. New York: Marcel Dekker, 2001: 617–683.
4. Xu K. Chem. Rev., 2004, 104, No. 10: 4303–4417. https://doi.org/10.1021/cr030203g
5. Adya A. K., Kalugin O. N., Volobuev M. N., Kolesnik Y. V. Mol. Phys., 2001, 99, No. 10: 835–854. https://doi.org/10.1080/00268970010024867
6. Chalaris M., Marinakis S., Dellis D. Fluid Phase Equil., 2008, 267, No. 1: 47–60. https://doi.org/10.1016/j.fluid.2008.02.019
7. Wang Z., Huang B., Wang S. et al. Electrochim. Acta., 1997, 42, No. 17: 261l-2617. https://doi.org/10.1016/S0013-4686(96)00440-9
8. Kirillov S. A. Chem. Phys. Lett., 1999, 303, No. 1–2: 37–42. https://doi.org/10.1016/S0009-2614(99)00146-3
9. Kirillov S. A., Morresi A., Paolantoni M., Sassi P. J. Phys. Org. Chem., 2007, 20, No. 8: 568–573. https://doi.org/10.1002/poc.1208
10. Forel M. T., Tranquil M. Spectrochim. Acta., 1970, A26, No. 8: 1023–1034. https://doi.org/10.1016/0584-8539(70)80004-6
11. James D. W., Mayes R. E. Aust. J. Chem., 1982, 35, No. 9: 1775–1784. https://doi.org/10.1071/CH9821775
12. Frost R. L., James D.W., Appleby R., Mayes R. E. J. Phys. Chem., 1982, 86, No. 19: 3840–3845. https://doi.org/10.1021/j100216a027