Ion solvation and association in LiClO4 – dimethylsulfoxide system

1Gorobets, MI
1Kirillov, SA
2Gafurov, MM
3Ataev, MB
3Tretyakov, DO
1Inter-Agency Department of Electrochemical Energy Systems of the NAS of Ukrain, Kyiv
2H. I. Amirkhanov Institute of Physics, Dagestan Scientific Center of the Russian Academy of Sciences , Makhachkala, Russia
3Analytical Center of Collective Use, Dagestan Scientific Centre of the Russian Academy of Sciences, Makhachkala, Russia
Dopov. Nac. akad. nauk Ukr. 2014, 1:125-129
https://doi.org/10.15407/dopovidi2014.01.125
Section: Chemistry
Language: Russian
Abstract: 

Ionic equilibria in theLiClO4 – dimethylsulfoxide (DMSO) system at 90 ºC in a concentration range from 5 to 25% mole fractions of a salt have been investigated by means of Raman spectroscopy. Spectroscopic manifestations of hydrogen bonds between molecules of DMSO and ClO4 ions were detected. Concentrations of monomeric, dimeric, and solvating DMSO molecules; free solvent molecules and those included in the ClO4 ion solvation sphere; free anions, ion pairs, separated by a solvent, and contact ion pairs are identified. Conclusions have been made about the composition of all components of solutions.

Keywords: association, ion solvation, LiClO4 – dimethylsulfoxide
References: 

1. Gores H. J., Barthel J., Zugmann S. et al. Liquid nonaqueous electrolytes. In: Daniel C., Besenhard J. O. (Eds.). Handbook of battery materials. Second Edition. Weinheim: Wiley-VCH, 2011: 525–626. https://doi.org/10.1002/9783527637188.ch17
2. Perelygin I. S. Infra-red spectra and solvation of ions. In: Krestov G. A. (Ed.). Ionic solvation. Chichester: Ellis Horwood, 1994: 100–207.
3. Alía J. M. Raman spectroscopic studies of ion-ion interactions in aqueous and nonaqueous electrolyte solutions. In: Lewis I. R., Edwards H. G. M. (Eds.). Handbook of Raman spectroscopy, from the research laboratory to the process line. New York: Marcel Dekker, 2001: 617–683.
4. Xu K. Chem. Rev., 2004, 104, No. 10: 4303–4417. https://doi.org/10.1021/cr030203g
5. Adya A. K., Kalugin O. N., Volobuev M. N., Kolesnik Y. V. Mol. Phys., 2001, 99, No. 10: 835–854. https://doi.org/10.1080/00268970010024867
6. Chalaris M., Marinakis S., Dellis D. Fluid Phase Equil., 2008, 267, No. 1: 47–60. https://doi.org/10.1016/j.fluid.2008.02.019
7. Wang Z., Huang B., Wang S. et al. Electrochim. Acta., 1997, 42, No. 17: 261l-2617. https://doi.org/10.1016/S0013-4686(96)00440-9
8. Kirillov S. A. Chem. Phys. Lett., 1999, 303, No. 1–2: 37–42. https://doi.org/10.1016/S0009-2614(99)00146-3
9. Kirillov S. A., Morresi A., Paolantoni M., Sassi P. J. Phys. Org. Chem., 2007, 20, No. 8: 568–573. https://doi.org/10.1002/poc.1208
10. Forel M. T., Tranquil M. Spectrochim. Acta., 1970, A26, No. 8: 1023–1034. https://doi.org/10.1016/0584-8539(70)80004-6
11. James D. W., Mayes R. E. Aust. J. Chem., 1982, 35, No. 9: 1775–1784. https://doi.org/10.1071/CH9821775
12. Frost R. L., James D.W., Appleby R., Mayes R. E. J. Phys. Chem., 1982, 86, No. 19: 3840–3845. https://doi.org/10.1021/j100216a027