Influence of gyroscopic forces on the stability of a rotating resilient plastic disk under tension

1Lila, DM
1Bohdan Khmelnytsky National University of Cherkasy
Dopov. Nac. akad. nauk Ukr. 2014, 1:51-56
Section: Mechanics
Language: Russian

A way of calculation of the Coriolis force is proposed within the small parameter method at the examination of the possible loss of stability of a rotating circular disk, whose axis is rotating with the given angular speed. Proceeding from the Saint-Venant condition of fluidity, a characteristic equation is obtained in the first approximation in respect to the critical radius of the plastic zone. The values of critical angular rotation speed of a disk are numerically determined under for various parameters of the system.

Keywords: resilient plastic disk, rotation, stability

1. Ivlev D. D. Izv. AN USSR. OTN, 1957, No. 1: 141–144 (in Russian).
2. Ershov L. V., Ivlev D. D. Izv. AN USSR. OTN, 1958, No. 1: 124–125 (in Russian).
3. Ivlev D. D., Ershov L. V. The perturbation method in the theory of an elastoplastic body. Moscow: Nauka, 1978 (in Russian).
4. Guz A. N., Nemish Yu. N. Method of perturbation of the shape of the boundary in the mechanics of continuous media. Kyiv: Vyshcha shkola, 1989 (in Russian).
5. Sokolovsky V. V. Theory of plasticity. Moscow: Vysh. shkola, 1969 (in Russian).
6. Guz A. N., Babich I. Yu. Three-dimensional theory of stability of deformable bodies. Kyiv: Nauk. dumka, 1985 (in Russian).
7. Malinin N. N. Applied theory of plasticity and creep. Moscow: Mashynostroenie, 1975 (in Russian).
8. Lila D. M., Martynyuk A. A. Int. Appl. Mech., 2012, 48, No. 2: 224–233.
9. Lila D. M., Martynyuk A. A. Appl. Math., 2011, 2, No. 5: 579–585.
10. Lila D. M., Martynyuk A. A. Appl. Math., 2012, 3, No. 5: 451–456.
11. Demyanushko I. V., Birger I. A. Calculation of the strength of rotating discs. Moscow: Mashynostroenie, 1978 (in Russian).
12. Bitsenko K. B., Grammel R. Technical dynamics. Vol. 1. Moscow; Leningrad: GITTL, 1950 (in Russian).
13. Bitsenko K. B., Grammel R. Technical dynamics. Vol. 2. Moscow; Leningrad: GITTL, 1952 (in Russian).