Percolation effects of conductivity in polymer nanocomposites filled with a binary filler

TitlePercolation effects of conductivity in polymer nanocomposites filled with a binary filler
Publication TypeJournal Article
Year of Publication2014
AuthorsMamunya, Ye.P, Levchenko, VV, Boiteux, G, Lebedev, EV
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2014.02.079
Issue2
SectionPhysics
Pagination79-84
Date Published2/2014
LanguageUkrainian
Abstract

Electrophysical properties of polymer systems based on polypropylene (PP) and the binary filler, carbon nanotubes (CNTs) and nanoparticles of nickel (Ni), are investigated. Composites with nanotubes (PP/CNTs) were conductive with the value of percolation threshold equal to φc = 0.7 vol.%, while the composites with nanonickel (PP/Ni) are not conductive. The addition of nano-nickel in composites PP/CNTs reduces the percolation threshold to φc = 0.2 vol.% and significantly increases the conductivity. These changes are explained by the emergence of the bridging effect, where the clusters of nanotubes are connected by the clusters of the nanometal, which is confirmed by electron microscopy.

Keywordsbinary filler, effects of conductivity, polymer nanocomposites
References: 

1. Pomogailo A. D., Rozenberg A. S., Uflyand I. E. Metal nanoparticles in polymers. Moscow: Khimiia, 2000 (in Russian).
2. Mamunya Ye. P., Muzychenko Yu. V., Pissis P. et al. Polymer. Eng. Sci., 2002, 42, No. 1: 90–100. https://doi.org/10.1002/pen.10930
3. Sandler J. K. W., Kirk J. E., Kinloch I. A. et al. Polymer., 2003, 44.: 5893–5899. https://doi.org/10.1016/S0032-3861(03)00539-1
4. Mamunya Ye. P., Lebovka N. I., Lisunova M. O. et al. J. Nanostr. Polym. Nanocomp., 2008, 4, No. 1: 21–27.
5. Potschke P., Dudkin S. M., Alig I. Polymer., 2003, 44: 5023–5030. https://doi.org/10.1016/S0032-3861(03)00451-8
6. Mamunia E. P., Yurzhenko M. V., Lebedev E. V et al. Electroactive half-material. Kyiv: Alfareklama, 2013 (in Ukrainian).
7. Georgakilas V., Gournis D., Tzitzios V. et al. J. Mater. Chem., 2007, 17: 2679–2694. https://doi.org/10.1039/b700857k
8. Guo D. J., Li H. L. Carbon., 2005, 43: 1259–1264. https://doi.org/10.1016/j.carbon.2004.12.021
9. Luo J., Xing Y., Zhu J. et al. Adv. Funct. Mater., 2006, 16: 1081–1085. https://doi.org/10.1002/adfm.200500755
10. Seo M.-K., Lee J.-R., Park S.-J. Mater. Sci. Eng., 2005, A404: 79–84. https://doi.org/10.1016/j.msea.2005.05.065
11. Liang G. D., Bao S. P., Tjong S. C. Mater. Sci. Eng., 2007, B142: 55–61. https://doi.org/10.1016/j.mseb.2007.06.028