Application of hyperspectral indices for the detection of grass cover changes from spectrometric survey data

1Lyalko, VI
2Shportiuk, ZM
2Sibirtseva, OM
2Dugin, SS
1Scientific Center for Aerospace Research of the Earth, Institute of Geological Science of the NAS of Ukraine, Kyiv
2Scientific Center for Aerospace Research of the Earth Institute of Geological Science of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2014, 4:105-112
https://doi.org/10.15407/dopovidi2014.04.105
Section: Geosciences
Language: Ukrainian
Abstract: 

The vegetation indices, i. e. the red edge position (REP) and the MERIS terrestrial chlorophyll index (TCI) obtained from the annual terrestrial spectrometry measurements for grass cover at three points of observation for the test sites within the Mariinsky park, "Dynamo" stadium, and the Dnieper riverbank in the Kyiv city for the period from 2009 to 2013 are studied. The most wide region of shifts from the mean values of these two indices are indicated for grass cover on the Dnieper riverbank, the narrowest one is detected for the "Dynamo" stadium grass lawn. The relationship between REP and TCI values with the correlation coefficient r = 0.95 is determined. The prognostic edicted linear regression model for REP versus TCI relation (R2 = 0.45, n = 14) with the index of agreement d = 0.98 is developed. The model validation is performed using spectrometric data on 06.06.2013.

Keywords: grass cover, hyperspectral indices
References: 

1. Jones D. A., Hansen A. I., Bly K. et al. Remote Sens. Environ., 2009, 113: 1346–1356. https://doi.org/10.1016/j.rse.2008.08.018
2. Horler D. N. H., Dockray M., Barber J. Int. J. Remote Sens., 1983, 4: 273–288. https://doi.org/10.1080/01431168308948546
3. Jago R. A., Curran P. J. The effect of land contamination on the relationship between the red edge and chlorophyll concentration of a grassland canopy. In: RSS’95: Remote Sensing in Action. Nottingham: Remote Sens. Soc., 1995: 442–449.
4. Jago R. A., Curran P. J. Estimating canopy chlorophyll concentration from field and airborne spectra to infer levels of land contamination. In: RSS’97: Observations and Interactions. Redding: Rem. Sens. Soc., 1997: 274–279.
5. Clevers J. G. P.W., Kooistra L., Salas E. A. L. Int. J. Remote Sens., 2004, 25: 1–13. https://doi.org/10.1080/01431160310001654473
6. Lyalko V. I., Shportjuk Z. M., Sakhtskiy O. I. et al. Kosm. nauka i tekhnologiia, 2010, 16, No. 3: 39–45 (in Russian).
7. Lyalko V. I., Shportjuk Z. M., Sybirtseva O. M. et al. Geol. zhurn., 2012: No. 4: 79–85 (in Russian).
8. Dash J., Curran P. J. Int. J. Remote Sens., 2004, 25: 5403–5413. https://doi.org/10.1080/0143116042000274015
9. Lyalko V. I., Shportjuk Z. M., Sybirtseva O. M. et al Kosm. nauka i tekhnologiia, 2012, 18, No. 2: 15-19 (in Russian).
10. Gmurman V. E. Theory of Probability and Mathematical Statistics. Moscow: Vyshcha shkola, 1998 (in Russian).
11. Willmot C. J. Phys. Geogr., 1981, 2, No. 2: 184–194.
12. Krause P., Boyle D. P., Båse F. Adv. Geosciences, 2005, 5: 89–97. https://doi.org/10.5194/adgeo-5-89-2005