Canonical Poisson structure on T*SE(3) and the Hamiltonian mechanics of solids. Dynamics of a magnetic dipole in the external field

1Zub, SS
1H. S. Skovoroda Kharkiv National Pedagogical University
Dopov. Nac. akad. nauk Ukr. 2014, 4:37-42
https://doi.org/10.15407/dopovidi2014.04.037
Section: Information Science and Cybernetics
Language: Russian
Abstract: 

We consider a canonical Poisson structure on the cotangent bundle T*SE(3) as a basis for the Hamiltonian mechanics of solids. The Poisson brackets for base dynamic variables are calculated in the different representations. We propose a "mixed" representation so that the forward and rotatory degrees of freedom are described in an inertial reference frame and in the body frame, respectively. The equation of motion is obtained for a magnetic dipole in the external field.

Keywords: canonical Poisson structure, Hamiltonian mechanics of solids
References: 

1. Marsden J., Ratiu T. Introduction to mechanics and symmetry. A basic exposition of classical mechanical system. In: Texts in Appl. Math. 17. New York: Springer, 1994. https://doi.org/10.1007/978-1-4612-2682-6
2. Borisov A. V., Mamaev I. S. Dynamics of a solid. Izhevsk: RKhD, 2001 (in Russian).
3. Zub S. S. Zhurn. obchysl. ta prykl. matematyky, 2013, 111, No 1: 101–116 (in Russian).
4. Zub S. S. Visn. Kyiv. Nac. un-ta, 2011, No. 2: 176–184 (in Ukrainian).
5. Zub S. S. Zhurn. obchysl. ta prykl. matematyky, 2013, 112, No. 2: 84–93 (in Russian).
6. Zub S. S. Zhurn. obchysl. ta prykl. matematyky, 2010, 102, No. 3: 49–62 (in Russian).
7. Dullin H. R., Easton R.W. Physica D., 1999, 126, No. 1: 1–17. https://doi.org/10.1016/S0167-2789(98)00251-6
8. Zulanke R., Vintgen P. Differential geometry and bundles, Moscow: Mir, 1975 (in Russian).
9. Abraham R., Marsden J. E. Foundations of mechanics. Reading, MA: Benjamin, 1978.
10. Borisov A. V., Mamaev I. S. Poisson structures and Lie algebras in Hamiltonian mechanics. Izhevsk: RKhD, 1999 (in Russian).