Binding of mAb II-5c to Aα20–78 fragment of fibrinogen inhibits a neoantigenic determinant exposure within Bβ126–135 site of a molecule

1Urvant, LP, 1Makogonenko, EM, 1Pozniak, TA, 1Pydiura, NA, 1Kolesnikova, IN, 1Tsap, PY, 1Bereznitzkiy, GK, 1Lugovskoy, EV, 1Komisarenko, SV
1O. V. Palladin Institute of Biochemistry of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2014, 5:149-156
https://doi.org/10.15407/dopovidi2014.05.149
Section: Biochemistry
Language: Ukrainian
Abstract: 

The influence of mAb II-5c, epitope of which was localized within Aα20–78 fragment of the E-region of fibrinogen molecule, on the exposure of mAb I-3c neoantigenic determinant at the transformation of fibrinogen to fibrin has been investigated. Using ELISA, SPR, and electrophoretic analysis, we have found that mAb II-5c inhibited the binding of mAb I-3c to fibrin, thrombin to fibrin, and thrombin cleavage of fibrinopeptide A from fibrinogen in fibrinogen + thrombin and X-fragment fibrinogen + thrombin systems. These data support our hypothesis that the thrombin-fibrinogen substrate complex is a trigger of the restructuring of a fibrinogen molecule at the transformation in fibrin, which is accompanied by the formation of neoantigenic determinants of mAb I-3c within Bβ126–135 site of a molecule.

Keywords: Bβ126–135 site of a molecule, fibrinogen, mAb II-5c, neoantigenic determinant
References: 

1. Lugovskoy E. V., Gritsenko P. G., Kolesnikova I. N. et al. Thromb. Res., 2009, 123, No. 5: 765–770. https://doi.org/10.1016/j.thromres.2008.08.024
2. Urvant L. P., Makogonenko E. M., Bereznitskiy G. K. et al. Dopov. Nac. akad. nauk Ukr., 2012, No. 7: 170–175 (in Ukrainian).
3. Urvant L. P., Makogonenko E. M., Pydiura N. O. et al. Dopov. Nac. akad. nauk Ukr., 2013, No. 10: 177–181 (in Ukrainian).
4. Kolesnikova I. M., Lugovskaya N. E., Lugovskoy E. V. et al. Dopov. Nac. akad. nauk Ukr., 2006, No. 9: 181–185 ((in Ukrainian).
5. Friguet B., Chaffotte A. F., Djavadi-Ochaniance Z., Goldberg M. E. J. Immunol. Meth., 1985, 77, No. 2: 305–319. https://doi.org/10.1016/0022-1759(85)90044-4
6. Varetska T. V. Ukr. biokhim. zhurn., 1960, 32, No. 1: 13–24 (in Ukrainian).
7. Thompson A. R., Enfield D. L., Ericsson L. H. et al. Arch. Biochem. Biophys., 1977, 178, No. 2: 356–367. https://doi.org/10.1016/0003-9861(77)90204-1
8. Medved L. V., Gorkun O. V., Manyakov V. F., Belitser V. A. Molekulyar. bioilogiya, 1986, 20, No. 2: 461–470 (in Russian).
9. Solov’ev D. A., Ugarova T. P. Biokhimiia, 1993, 58, No. 8: 1221–1233.
10. Laemmli U. K. Nature, 1970, 227, No. 5259: 680–685. https://doi.org/10.1038/227680a0
11. Pechik I., Madrazo J., Mosesson M.W. et al. Proc. Natl. Acad. Sci. USA, 2004, 101, No. 9: 2718–2723. https://doi.org/10.1073/pnas.0303440101
12. Vu T. T., Stafford A. R., Leslie B. A. et al. J. Biol. Chem., 2013, 288, No. 23: 16862–16871. https://doi.org/10.1074/jbc.M113.464750
13. Stabbs M. T., Bode W. A. Thromb. Res., 1993, 69, No. 1: 1–59. https://doi.org/10.1016/0049-3848(93)90002-6
14. Lugovskoy E. V., Gritsenko P. G., Kolesnikova I. N. et al. Thromb Res., 2004, 113, No. 3./4.: 251–259.
15. Biennie C. D., Lord S. T. Thromb. Haemost., 1991, 65, No. 2: 165–168.