On the application of mass lumping in the Petrov–Galerkin finite element method for convection-diffusion problems

1Siryk, SV
2Salnikov, NN
1National Technical University of Ukraine "Kyiv Polytechnic Institute"
2Space Research Institute of the NAS of Ukraine and SSA of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2014, 5:39-44
https://doi.org/10.15407/dopovidi2014.05.039
Section: Information Science and Cybernetics
Language: Russian
Abstract: 

We address the topics of overcoming the dispersive and dissipative effects that arise after the application of mass lumping in the finite-element Petrov–Galerkin method for convection-diffusion problems. A generalization of some earlier results in this field is carried out, as well as the comparison with other existing approaches. The test calculations confirm the theoretical results obtained.

Keywords: convection-diffusion problems, Petrov–Galerkin finite element method
References: 

1. Finlayson B. A. Numerical methods for problems with moving fronts. Seattle; Washington: Ravenna Park Publ., 1992.
2. Roos H.-G., Stynes M., Tobiska L. Robust numerical methods for singularly perturbed differential equations. Berlin: Springer-Verlag, 2008.
3. Sirik S. V., Salnikov N. N. Probl. upravleniia i informatikli, 2012, No. 1: 94–110 (in Russian).
4. Zienkiewicz O. Z., Taylor R. L. The finite element method. Vol. 1: The basis. Oxford: Butterworth-Heinemann, 2000.
5. Hansbo P. Comput. Methods Appl. Mech. Engrg., 1994, 117: 423–437. https://doi.org/10.1016/0045-7825(94)90127-9
6. Wendland E., Schulz H. E. Revista Minerva., 2005, 2, No. 2: 227–233.
7. Sirik S. V. Kibernetika i system. analiz, 2013, No. 5: 152–163 (in Russian).
8. Guermond J.-L., Pasquetti R. Comput. Methods Appl. Mech. Engrg., 2013, 253: 186–198. https://doi.org/10.1016/j.cma.2012.08.011
9. Samarskiy A. A., Popov Yu. P. Difference Methods solutions Gas-fired dynamics problems. 5th ed. Moscow: Liborkom, 2009 (in Russian).
10. Skvortsov L. M. Vychislit. metody i programmirovanie, 2008, 9: 154–162 (in Russian).