The photonic Bose–Einstein condensate and stopped light in ultracold atomic gases

1Slyusarenko, Yu.V, 1Boichenko, NP
1National Science Center Kharkiv Institute of Physics and Technology
Dopov. Nac. akad. nauk Ukr. 2014, 6:74-79
https://doi.org/10.15407/dopovidi2014.06.074
Section: Physics
Language: Ukrainian
Abstract: 

We have studied a possibility of the Bose condensate formation in a gas of photons, which are in thermodynamic equilibrium with the ideal gas of two-level Bose atoms below the degeneracy temperature. The coexistence conditions for the Bose-condensates in the atomic and photonic subsystems are found. The "avalanche" mode of condensation of photons is proposed. Such situation can be interpreted as "stopped light" in the Bose-condensate of atoms.

Keywords: Bose atoms, Bose–Einstein condensate, light, photons
References: 

1. Anderson M. H., Ensher J. R., Matthews M. R., Wieman C. E., Cornell E. A. Science, 1995, 269: 198–201. https://doi.org/10.1126/science.269.5221.198
2. Bradley C. C., Sackett C. A., Tollett J. J., Hulet R. G. Phys. Rev. Lett., 1995, 75: 1687–1691. https://doi.org/10.1103/PhysRevLett.75.1687
3. Davis K. B., Mewes M.-O., Andrews M. R., van Druten J. N., Durfee D. S., Kurn D. M., Ketterle W. Phys. Rev. Lett., 1995, 75: 3969–3973. https://doi.org/10.1103/PhysRevLett.75.3969
4. Pitaevskii L., Stringari S. Bose–Einstein condensation. New York: Oxford Univ. Press, 2003.
5. Pethick C. J., Smith H. Bose–Einstein condensation in dilute gases (second edition). Cambridge: Cambridge University Press, 2008. https://doi.org/10.1017/CBO9780511802850
6. Hau L. V., Harris S. E., Dutton Z., Behroozi C. H. Nature, 1999, 397: 594–598. https://doi.org/10.1038/17561
7. Slyusarenko Y. V., Sotnikov A. G. Phys. Rev. A., 2008, 780: 053622. https://doi.org/10.1103/PhysRevA.78.053622
8. Cornell E. A. Nature, 2001, 409: 461–462. https://doi.org/10.1038/35054152
9. Phillips D. F., Fleischhauer A., Mair A., Walsworth R. L., Lukin M. D. Phys. Rev. Lett., 2001, 86: 783–786. https://doi.org/10.1103/PhysRevLett.86.783
10. Liu C., Dutton Z., Berhoozi C. H., Hau L. V. Nature, 2001, 409: 490–493. https://doi.org/10.1038/35054017
11. Slyusarenko Y. V., Sotnikov A. G. Phys. Rev. A., 2011, 83: 023601. https://doi.org/10.1103/PhysRevA.83.023601
12. Klaers J., Schmitt J., Vewinger F., Weitz M. Nature, 2010, 468: 545–548. https://doi.org/10.1038/nature09567
13. Klaers J., Schmitt J., Damm T., Dung D., Vewinger F., Weitz M. Proc. SPIE, 2013, 8600: 86000L. https://doi.org/10.1117/12.2001831
14. Kruchkov A., Slyusarenko Yu. Phys. Rev. A., 2013, 88: 013615. https://doi.org/10.1103/PhysRevA.88.013615
15. Akhiezer A. I., Peletminskii S. V. Methods of statistical physics. Oxford: Pergamon Press, 1981.