The point symmetry group of a system of free second-order equations

1Shapoval, NM
1Taras Shevchenko National University of Kyiv
Dopov. Nac. akad. nauk Ukr. 2014, 6:32-36
https://doi.org/10.15407/dopovidi2014.06.032
Section: Mathematics
Language: Ukrainian
Abstract: 

It is proved that the complete point symmetry group of a system of free second-order ordinary differential equations is a projective general linear group acting in the space of independent and dependent variables.

Keywords: point symmetry, system of free equations
References: 

1. Markus L. Group theory and differential equations. Minneapolis: Univ. of Minnesota, 1960.
2. Gonzalez-Gascon F., Gonzalez-Lopez A. J. Math. Phys., 1983, 24: 2006–2021. https://doi.org/10.1063/1.525960
3. Gonzalez-Lopez A. J. Math. Phys., 1988, 29: 1097–1105. https://doi.org/10.1063/1.527948
4. Merker J. Acta Appl. Math., 2006, 92: 125–207. https://doi.org/10.1007/s10440-006-9064-z
5. Lie S. Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen. Leipzig: Teubner, 1891.
6. Boyko V. M., Popovych R. O., Shapoval N. M. J. Math. Anal. Appl., 2013, 397: 434–440. https://doi.org/10.1016/j.jmaa.2012.06.030
7. Bihlo A., Popovych R. O. Point symmetry group of the barotropic vorticity equation. Proceedings of the 5th Workshop “Group Analysis of Differential Equations and Integrable Systems”, 2011: 15–27.
8. Hydon P. E. Eur. J. Appl. Math., 2000, 11: 515–527. https://doi.org/10.1017/S0956792500004204
9. Bihlo A., Popovych R. O. J. Math. Phys., 2011, 52: 033103. https://doi.org/10.1063/1.3567175
10. Dos Santos Cardoso-Bihlo E., Popovych R. O. J. Engrg. Math., 2013, 82: 31–38. https://doi.org/10.1007/s10665-012-9589-2