Perturbed ordering cones for the analysis of vector optimization problems under uncertainty

1Lebedeva, TT, 1Semenova, NV, 1Sergienko, TI
1V.M. Glushkov Institute of Cybernetics of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2014, 6:42-47
https://doi.org/10.15407/dopovidi2014.06.042
Section: Information Science and Cybernetics
Language: Russian
Abstract: 

The analysis of the properties of perturbed cones that partially order the set of admissible solutions of the vector optimization problem with respect to linear objective functions is carried out. The structure of the set of specifically perturbed ordering cones with different values of the parameter of perturbations of the input data is studied.

Keywords: ordering cones, uncertainty, vector optimization
References: 

1. Podinovskuy V. V., Nogin V. D. Pareto-optimal solutions of multicriteria problems. Moscow: Nauka, 1982 (in Russian).
2. Smale S. J. Math. Econ., 1974, No. 1: 213–221. https://doi.org/10.1016/0304-4068(74)90013-5
3. Rokafellar R. Convex analysis. Moscow: Mir, 1973 (in Russian).
4. Pshenichny B. N., Danilin Yu. M. Numerical methods in extremal problems. Moscow: Nauka, 1975 (in Russian).
5. Kozeratska L. N., Lebedeva T. T., Sergienko T. I. Kibernetika, 1991, No. 1: 58–61 (in Russian).
6. Kozeratska L. N., Lebedeva T. T., Sergienko T. I. Kibernetika i sistem. analiz., 1993, No. 3: 172–176 (in Russian).
7. Kozeratska L. N. Kibernetika i sistem. analiz, 1994, No. 6: 122–133 (in Russian).
8. Sergienko T. I., Kozeratska L. N., Lebedeva T. T. Investigation of stability and parametric analysis of discrete optimization problems. Kyiv: Nauk. dumka, 1995 (in Russian).
9. Sergienko T. I., Kozeratska L. N., Kononova A. A. Kibernetika i sistem. analiz., 1997, No. 1: 3–10 (in Russian).
10. Kozeratska L., Forbes J. F., Goebel R. J., Kresta J. V. Linear algebra and its applications, 2004, 378: 203–229. https://doi.org/10.1016/j.laa.2003.09.013