Stability of CdS quantum dots synthesized with the help of the bacterium Escherichia coli

1Borovaya, MN, 2Naumenko, AP, 1Yemets, AI, 1Blume, Ya.B
1Institute of Food Biotechnology and Genomics of the NAS of Ukraine, Kyiv
2Taras Shevchenko National University of Kyiv
Dopov. Nac. akad. nauk Ukr. 2014, 7:145-151
https://doi.org/10.15407/dopovidi2014.07.145
Section: Biochemistry
Language: Ukrainian
Abstract: 

Semiconductor CdS nanoparticles are produced by the bacterium Escherichia coli. It is shown that their maximum luminescence peak is at 443 nm, which is typical of cadmium sulfide nanoparticles synthesized using microorganisms. The stability of the obtained quantum dots is investigated for the first time by spectral analysis. It is established that nanoparticles are aggregated. However, they retain the ability to luminescence for 10 days, 1 and 3 months after a sample preparation. By the method of transmission electron microscopy, it is demonstrated that quantum dots are approximately of a spherical shape, do not have surface defects, and have a diameter from 4 to 8 nm.

Keywords: bacterium Escherichia coli, CdS quantum dots, stability
References: 

1. Li X., Xu H., Chen Zh.-Sh., Chen G. J. Nanomater., 2011, 2011: 1–16.
2. Bhattacharya R., Mukherjee P. Adv. Drug Deliv. Rev., 2008, 60, No 11: 1289–1306. https://doi.org/10.1016/j.addr.2008.03.013
3. Konishi Y., Ohno K., Saitoh N. et al. J. Biotechnol., 2007, 128, No 3: 648–653. https://doi.org/10.1016/j.jbiotec.2006.11.014
4. Perez-Gonzalez T., Jimenez-Lopez C., Neal A. L. et al. Geochim. Cosmochim. Acta., 2010, 74, No. 3: 967–979. https://doi.org/10.1016/j.gca.2009.10.035
5. Holmes J. D., Richardson D. J., Saed S. et al. Microbiology, 1997, 143, No. 8: 2521–2530. https://doi.org/10.1099/00221287-143-8-2521
6. Dameron C. T., Reese R. N., Mehra R. K. Nature, 1989, 338, No. 13: 596–597. https://doi.org/10.1038/338596a0
7. Ahmad A., Mukherjee P., Mandal D. et al. J. Am. Chem. Soc., 2002, 124: 12108–12109. https://doi.org/10.1021/ja027296o
8. Borova M. M., Naumenko A. P., Pirko Ya. V. et al. Dopov. Nac akad. nauk Ukr., 2014, No. 2: 153–159 (in Ukrainian).
9. Mousavi R. A., Akhavan Sepahy A., Fazeli M. R. Proc. Int. Conf. Nanomat.: applicat. and propert., 2012, 1, No. 1: 1–5.
10. Sweeney R. Y., Mao C., Gao X. Chem. Biol., 2004, 11, No. 11: 1553–1559. https://doi.org/10.1016/j.chembiol.2004.08.022
11. Asaula V. N., Mirnaya T. A., Yaremchuk G. G. Nanosistemy, nanomaterialy, nanotekhnologii, 2012, 10, No. 1: 193–201 (in Russian).
12. Morozov P. V., Grigorev E. I., Zavialov S. A., Chvalun S. N. Fizika tverd. tela, 2012, 54, No. 11: 2155– 2159 (in Russian).
13. Bai H. J., Zhang Z. M., Guo Y., Yang G. E. Colloids Surf., B, 2009, 70: 142–146. https://doi.org/10.1016/j.colsurfb.2008.12.025
14. El-Raheem R., El-Shanshoury A., Elsilk S. E., Ebeid M. E. Afr. J. Biotechnol., 2012, 11, No. 31: 7957–7965.
15. Mirkin L. I. Handbook of X-ray diffraction analysis of polycrystals. Moscow: Gos. izd-vo fiz.-mat. lit., 1961 (in Russian).