Title | Quantum-chemical analysis of all possible m1Thy · m9Ade pairs of DNA bases |
Publication Type | Journal Article |
Year of Publication | 2014 |
Authors | Plodnik, DP, Voiteshenko, IS, Hovorun, DM |
Abbreviated Key Title | Dopov. Nac. akad. nauk Ukr. |
DOI | 10.15407/dopovidi2014.07.158 |
Issue | 7 |
Section | Biophysics |
Pagination | 158-164 |
Date Published | 7/2014 |
Language | Ukrainian |
Abstract | The complete family of hydrogen-bound base pairs of DNA m1Thy · m9Ade methylated by glycosidic linkages is obtained by quantum-chemical methods on MP2/6-311++G(2df,pd)//B3LYP/6-311++G(d,p) levels of theory for the first time. The total number is 32 different structures. It is first found that the Hoogsten pair corresponds to the global minimum of the Gibbs free energy, near which three couples (reverse Hoogsten, Watson–Crick, and reverse Watson–Crick ones) in the energy interval 0–1.20 kcal/mol are located. Their combined occupancy under normal conditions is 99.9%. |
Keywords | m1Thy · m9Ade pairs of DNA bases, quantum-chemical analysis |
1. Brovarets O. O. Ukr. biokhim. zhurn., 2013, 85, No. 4: 104–110 (in Ukrainian).
2. Brovarets O. O., Hovorun D. M. Ukr. bioorgan. acta., 2010, No. 1: 11–17 (in Ukrainian).
3. Sukhodub L. F. Chem. Rev., 1987, 87, No. 3: 589–606. https://doi.org/10.1021/cr00079a006
4. Brovarets O. O., Hovorun D. M. J. Biomol. Struct. Dyn., to appear. doi: https://doi.org/10.1080/07391102.2013.852133.
5. Nedderman A. N. R., Stone M. J., Williams D. H. et al. J. Mol. Biol., 1993, 230, No. 3: 1068–1076. https://doi.org/10.1006/jmbi.1993.1219
6. Petrushka J., Sowers L. C., Goodman M. F. J. Mol. Biol., 1986, 83: 1559–1562.
7. Frisch M. J., Trucks G.W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O.,. Austin A. J, Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P.M. W., Johnson, Chen W., Wong M. W., Gonzalez C., Pople J. A. Gaussian 03, Revision C. 02. Gaussian, Inc., Wallingford CT, 2004.
8. Bader R. W. F. Atoms in molecules. A quantum theory. Oxford: Calendon Press, 1990.
9. Sokolov N. D., Chulanovskyi V. M. (Eds.). Hydrogen Communications. Moscow: Nauka, 1964 (in Russian).
10. Keith T. A. AIMAll (Version 10.05.04), 2010 Retrieved from http://aim.tkgristmill.com.
11. Grunenberg J., Barone G. Royal Society of Chem., 2013, No. 3: 4757–4762.
12. Weinhold F., Landis C. R. Chem. Educ. Res. Pract. Eur., 2001, No. 2: 91–104.
13. Iogansen A. V. Spectrochim. Acta. Part A., 1999, 55: 1585–1612. https://doi.org/10.1016/S1386-1425(98)00348-5
14. Espinosa E., Alkorta I., Rozas I., Elguero J., Molins E. Chem. Phys. Lett., 2001, 336, No. 5–6: 457–461. https://doi.org/10.1016/S0009-2614(01)00178-6