Intramolecular hydrogen bonds in a quercetin molecule: a study by the method of analysis of the electron density

TitleIntramolecular hydrogen bonds in a quercetin molecule: a study by the method of analysis of the electron density
Publication TypeJournal Article
Year of Publication2014
AuthorsProtsenko, IO
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2014.07.165
Issue7
SectionBiophysics
Pagination165-168
Date Published7/2014
LanguageUkrainian
Abstract

Using the method of analysis of the electron density at the level of the theory DFT B3LYP/6-31++G(d,p), it is shown that each of twelve stable conformers of a quercetin molecule has three intramolecular H-bonds - two OH. . .O and one CH. . .O, whose energies lie within 3.16–6.09 kcal/mol. Moreover, the total energy of H-bonds in each conformer is a little bit higher than the value of 13 kcal/mol. For the most energetically favorable conformer, it is shown that the H-bond CH. . .O is quite flexible and is broken when the modified phenyl ring is turned relative to the plane of the molecule by an angle of more than 45 degrees.

Keywordselectron density, hydrogen bonds, quercetin molecule
References: 

1. Manach C., Scalbert A., Morand C. et al. Am. J. Clin. Nutr., 2004, 79: 727–747.
2. Russo G. L. Biochem. Pharmacol., 2007, 74: 533–544. https://doi.org/10.1016/j.bcp.2007.02.014
3. Egert S., Bosy-Westphal A., Seiberl J. et al. Br. J. Nutr., 2009, 102, No. 7: 1065–1074. https://doi.org/10.1017/S0007114509359127
4. Protsenko I. O., Hovorun D. M. Dopov. NAc. akad. nauk Ukr., 2014, No. 3: 153–157 (in Ukrainian).
5. Baker R. Atoms in molecules: quantum theory. Moscow: Mir, 2001 (in Russian).
6. Becke A. D. J. Chem. Phys., 1993, 98, No. 7: 5648–5652. https://doi.org/10.1063/1.464913
7. Frisch M. J., Trucks G.W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O.,. Austin A. J, Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y., Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G., Clifford S., Cioslowski J., Stefanov B. B., Liu G., Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P.M. W., Johnson, Chen W., Wong M. W., Gonzalez C., Pople J. A. Gaussian 03, Revision C. 02. Gaussian, Inc., Wallingford CT, 2004.
8. Bulavin L. A., Nikolaenko T. Yu., Hovorun D. M. Visn. SevNTU. Ser. Fizyka biol. system i molekul, 2011, Iss. 113: 41–45 (in Russian).
9. Espinosa E., Molins E., Lecomte C. Chem. Phys. Lett., 1998, 285: 170–173. https://doi.org/10.1016/S0009-2614(98)00036-0