α,α-Difluoro-β-ketophosphonates on a tetraazamacrocyclic platform: Synthesis and inhibitory activity against protein tyrosine phosphatases

Titleα,α-Difluoro-β-ketophosphonates on a tetraazamacrocyclic platform: Synthesis and inhibitory activity against protein tyrosine phosphatases
Publication TypeJournal Article
Year of Publication2014
AuthorsKhavrienko, DI, Kobzar, OL, Shevchuk, MV, Romanenko, VD, Kobelev, SM, Averin, AD, Beletskaya, IP, Vovk, AI, Kukhar, VP
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2014.09.109
Issue9
SectionChemistry
Pagination109-115
Date Published9/2014
LanguageEnglish
Abstract

The present study offers a new approach for designing inhibitors of protein tyrosine phosphatases. We have synthesized the cyclam derivatives with α,α-difluoro-β-ketophosphonate fragments covalently attached to tetraazamacrocyclic scaffold, which is known to be of medical interest. The obtained functionalized macrocycles were evaluated as inhibitors of PTP1B, TC-PTP, CD45, and other protein tyrosine phosphatases.

Keywordsinhibitory activity, phosphatases, synthesis, α;α-Difluoro-β-ketophosphonates
References: 

1. Vintonyak V. V., Antonchick A. P., Rauh D., Waldmann H. Curr. Opin. Chem. Biol., 2009, 13: 272–283. https://doi.org/10.1016/j.cbpa.2009.03.021
2. Bialy L., Waldmann H. Angew. Chem. Int. Ed. Engl., 2005, 44:  3814–3839. https://doi.org/10.1002/anie.200461517
3. Wardle N. J., Hudson H. R., Bligh S.W. A. Curr. Org. Synth., 2010, 14: 426–446.
4. Burke T. R., Lee K. Acc. Chem. Res., 2003, 36: 426–433. https://doi.org/10.1021/ar020127o
5. Chetyrkina S., Estieu-Gionnet K., Lan G. et al. Tetrahedron. Lett., 2000, 41: 1923. – 1926.
6. Solas D., Hale R. L., Patel D. V. J. Org. Chem., 1996, 61: 1537–1539. https://doi.org/10.1021/jo9517508
7. Zhang S., Liu S., Tao R. et al. J. Am. Chem. Soc., 2012, 134: 18116–18124. https://doi.org/10.1021/ja308212y
8. Meanwell N. A. J. Med. Chem., 2011, 54: 2529–2591. https://doi.org/10.1021/jm1013693
9. Li X., Bhandari A., Holmes C. P., Szardenings A. K. Bioorg. Med. Chem. Lett., 2004, 14: 4301–4306. https://doi.org/10.1016/j.bmcl.2004.05.082
10. Vovk A. I., Kononets L. A., Tanchuk V. Yu., Cherenok S. O., Drapailo A. B., Kalchenko V. I., Kukhar V. P. Bioorg. Med. Chem. Lett., 2010, 20:  483–487. https://doi.org/10.1016/j.bmcl.2009.11.126
11. Liang F., Wan S., Li Z. et al. Curr. Med. Chem., 2006, 13: 711–727. https://doi.org/10.2174/092986706776055706
12. Kobelev S. M, Averin A. D., Maloshitskaya O. A., Denat F., Guilard R., Beletskaya I. P. Macroheterocycles, 2012, 5: 389–395. https://doi.org/10.6060/mhc2012.121102a
13. Yang W., Giandomenico C. M., Sartori M., Moore D. A. Tetrahedron Lett., 2003, 44: 2481–2483. https://doi.org/10.1016/S0040-4039(03)00338-1
14. Pajkert R., Milewska M., Roschenthaler G.-V., Koroniak H. J. Fluorine Chem., 2009, 130: 695–701. https://doi.org/10.1016/j.jfluchem.2009.05.001
15. Blades K., Lequeux T. P., Percy J. M. Tetrahedron, 1997, 53: 10623–10632. https://doi.org/10.1016/S0040-4020(97)00673-X