On the sedimentation modeling by a hyperbolic equation and its degeneration

1Kryvonos, Yu.G
2Selezov, IT
1V.M. Glushkov Institute of Cybernetics of the NAS of Ukraine, Kyiv
2Institute of Hydromechanics of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2014, 9:40-43
https://doi.org/10.15407/dopovidi2014.09.040
Section: Information Science and Cybernetics
Language: Russian
Abstract: 

A generalized model of sedimentation, which considers the evolution of sediments on the bottom surface with a finite velocity is presented. We investigate a singular degeneration of the generalized hyperbolic equation to the traditional equation in the class of generalized solutions.

Keywords: degeneration, hyperbolic equation, modeling
References: 

1. Maxwell J. C. Phil. Trans. Roy. Soc., 1867, 157: 49–88. https://doi.org/10.1098/rstl.1867.0004
2. Vabishchevich P. N. BIT Number Math., 2013, 53, No 3: 755–778. https://doi.org/10.1007/s10543-013-0423-7
3. Selezov I. T., Kryvonos Yu. G. Cybernetics and Systems Analysis, 2013, 49, No 4: 569–577. https://doi.org/10.1007/s10559-013-9542-z
4. Selezov I. T. Wave hydraulic models as mathematical approximations. Proc. 22th Congress, Int. Association for Hydraulic Research (IAHR), Lausanne, 1987, Techn. Session B., 1987.
: 301–306.
5. Ignatov E. I., Robsman V. A. Voprosy geografii, No 119: Morskie berega, 1982: 40–54 (in Russian).
6. Zang H., Kahawita R. J. Hydraulic Reseach., 1988, 26, No 3: 323–342. https://doi.org/10.1080/00221688809499215
7. Hjelmfelt A. T. River bed degradation in the placeMissouri river loess hills. The 23rd Congress of Int. Association for Hydraulic Research (IAHR), Theme: Hydraulics and Environment. Proc. Technical Session B: Fluvial CityHydraulics, country-regionCanada, CityplaceOttawa, 21–25 August 1989. B-233 – B-239.
8. Schwartz L. M´ethodes math´ematiques pour les sciences physiques. – Paris: Hermann, 1961.
9. Mizohata S. The theory of partial differential equations, Tokyo, 1965.
10. Ladyzhenskaya O. A. Boundary-value problems of mathematical physics Moscow: Nauka, 1973 (in Russian).
11. Krivonos Yu. G., Selezov I. T. Dopov. Nac. akad. nauk Ukr., 2013, No 7: 37–41.
12. Selezov I. T. The concept of hyperbolicity in the theory of controlled dynamic systems. In Cybernetics and calculated. equipment. Iss. 1, Kyiv: Nauk. dumka, 1969: 131–137 (in Russian).
13. Selezov I., Volynski R. Wave refraction and sediment dynamics modeling in coastal zone, Kiev: SMP “AVERS”, 2013.
14. Rudyak V. Ya., Smagulov Sh. O. DAN USSR, 1980, 255, No 4: 801–804 (in Russian).