1Stoyan, Yu.G 1Pankratov, AV 1Romanova, TE 2Chernov, NI 1A. N. Podgorny Institute for Mechanical Engineering Problems of the NAS of Ukraine, Kharkiv 2The University of Alabama at Birmingham, USA |
Dopov. Nac. akad. nauk Ukr. 2014, 9:49-54 |
https://doi.org/10.15407/dopovidi2014.09.049 |
Section: Information Science and Cybernetics |
Language: Russian |
Abstract: The article considers the classes of special functions (quasi-phi-functions, normalized quasi-phi-functions, pseudonormalized quasi-phi-functions). The functions allow us to describe the non-overlapping of a pair of rotating geometric objects and distance constraints analytically. Basic characteristics of quasi-phi-functions are formulated in the form of theorems. We introduce quasi-phi-functions for some rotating 2D- and 3D-objects. |
Keywords: geometric objects, modeling |
1. Wascher G., Hauner H., Schumann H. Europ. J. of Operational Research., 2007, 183, Iss. 3: 1109–1130. https://doi.org/10.1016/j.ejor.2005.12.047
2. Stoyan Yu. Dopov. Nac. akad. nauk Ukr., 2001, No 8: 112–117.
3. Chernov N., Stoyan Yu., Romanova T. Computational Geometry: Theory and Applications, 2010, 43(5): 535–553. https://doi.org/10.1016/j.comgeo.2009.12.003
4. Chernov N., Stoyan Yu., Romanova T., Pankratov A. Advances in Operations Research, 2012, Article ID 346358.
5. Pankratov A. Systemy obrobky informatsii, 2013, 1(108): 182–186 (in Russian).
6. Stoyan Yu., Chugay A. Cybernetics and Systems Analysis, 2012, 48, No 6: P. 837–845. https://doi.org/10.1007/s10559-012-9463-2
7. Stoyan Yu. G., Chugay A. M. Dopov. Nac. akad. nauk Ukr., 2011, No 12: 35–40 (in Russian).