Quasi-phi-functions for a mathematical modeling of the relations of geometric objects

1Stoyan, Yu.G
1Pankratov, AV
1Romanova, TE
2Chernov, NI
1A. N. Podgorny Institute for Mechanical Engineering Problems of the NAS of Ukraine, Kharkiv
2The University of Alabama at Birmingham, USA
Dopov. Nac. akad. nauk Ukr. 2014, 9:49-54
https://doi.org/10.15407/dopovidi2014.09.049
Section: Information Science and Cybernetics
Language: Russian
Abstract: 

The article considers the classes of special functions (quasi-phi-functions, normalized quasi-phi-functions, pseudonormalized quasi-phi-functions). The functions allow us to describe the non-overlapping of a pair of rotating geometric objects and distance constraints analytically. Basic characteristics of quasi-phi-functions are formulated in the form of theorems. We introduce quasi-phi-functions for some rotating 2D- and 3D-objects.

Keywords: geometric objects, modeling
References: 

1. Wascher G., Hauner H., Schumann H. Europ. J. of Operational Research., 2007, 183, Iss. 3: 1109–1130. https://doi.org/10.1016/j.ejor.2005.12.047
2. Stoyan Yu. Dopov. Nac. akad. nauk Ukr., 2001, No 8: 112–117.
3. Chernov N., Stoyan Yu., Romanova T. Computational Geometry: Theory and Applications, 2010, 43(5): 535–553. https://doi.org/10.1016/j.comgeo.2009.12.003
4. Chernov N., Stoyan Yu., Romanova T., Pankratov A. Advances in Operations Research, 2012, Article ID 346358.
5. Pankratov A. Systemy obrobky informatsii, 2013, 1(108): 182–186 (in Russian).
6. Stoyan Yu., Chugay A. Cybernetics and Systems Analysis, 2012, 48, No 6: P. 837–845. https://doi.org/10.1007/s10559-012-9463-2
7. Stoyan Yu. G., Chugay A. M. Dopov. Nac. akad. nauk Ukr., 2011, No 12: 35–40 (in Russian).