Effect of Ca2+ and Mg2+ cations on surface charges of erythrocytes and lactobacilli Streptococcus thermophilus and their adhesive interaction

TitleEffect of Ca2+ and Mg2+ cations on surface charges of erythrocytes and lactobacilli Streptococcus thermophilus and their adhesive interaction
Publication TypeJournal Article
Year of Publication2015
AuthorsAnikieieva, MA, Rozanova, SL, Kovalenko, SYe., Gordiyenko, OI, Gordiyenko, Ye.O
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2015.01.159
Issue1
SectionBiophysics
Pagination159-165
Date Published1/2015
LanguageUkrainian
Abstract

We propose a simple accessible model of lactobacilli adhesion to human erythrocytes. The effects of divalent (Ca2+, Mg2+) cations on the surface charge of erythrocytes and lactobacilli S. thermophilus and their adhesive interaction have been studied. We have shown that, despite the similar unidirectional influence of Ca2+ and Mg2+ cations on lactobacillus S. thermophilus adhesion to human erythrocytes, the underlying causes of these influences are different. While the Ca2+ ions affect erythrocyte's surface charge but do not change it in S. thermophilus, the Mg2+ ions, on the contrary, influence the lactobacilli surface charge and do not affect the charge of erythrocytes. This result supports the assumption that, in this case, the divalent cations affect the second irreversible stage of the adhesive process rather than the physical interactions of the first reversible stage.

Keywordsadhesive, cations, erythrocytes, interaction, lactobacilli
References: 
  1. Anikieieva M., Gordiyenko O. Periodicum biologorum, 2014, 116, No 1: 89–93.
  2. Anikieieva M. O., Kovalenko I. F., Kovalenko S. E., Gordiyenko O. I. Biofiz. visn. 2014, 31, No 1: 35–41 (in Ukrainian).
  3. Israelachvili J. Intermolecular and Surface forces, 3rd ed., Burlington: Academic Press, 2011.
  4. Bos R., van der Mei H. C., Busscher H. J. FEMS Microbiol. Rev., 1999, 23: 179–230. https://doi.org/10.1111/j.1574-6976.1999.tb00396.x
  5. An Y. H., Friedman R. J. J. Biomed. Mat., 1998, 43: 338–348. https://doi.org/10.1002/(SICI)1097-4636(199823)43:3<338::AID-JBM16>3.0.CO;2-B
  6. Martinez-Gil M., Romero D., Kolter R., Espinosa-Urgela M. J. Bacteriol.– 2012, 194, No 24: 6782–6789. https://doi.org/10.1128/JB.01094-12
  7. Arrizubieta M. J., Toledo-Arana A., Amorena B. et al. J. Bacteriol. 2004, 186: 7490–7498. https://doi.org/10.1128/JB.186.22.7490-7498.2004
  8. Gambaro G., Baggio B., Cicerello E. et al. Diabetes, 1988, 37: 745–748. https://doi.org/10.2337/diab.37.6.745
  9. Cruz L. F., Cobine P. A., De La Fuente L. Appl. Environ. Microbiol., 2012, 78: 1321–1331. https://doi.org/10.1128/AEM.06501-11
  10. Garrison-Schilling K. L. Environ. Microbiol., 2011, 13: 643–654. https://doi.org/10.1111/j.1462-2920.2010.02369.x
  11. Chauviere G., Coconnier M.-H., Kerneis S. et al. J. Gen. Microbiol., 1992, 138: 1689–1696. https://doi.org/10.1099/00221287-138-8-1689
  12. Lim S.-M., Ahn D.-H. J. Microbiol. Biotechnol., 2012, 22, No 12: 1731–1739. https://doi.org/10.4014/jmb.1208.08049
  13. Mahalingam B., Ajroud K., Alonso J. L. et al. J. Immunology, 2011, 187: 6393–6401. https://doi.org/10.4049/jimmunol.1102394
  14. Gagneux P., Cheriyan M., Hurtado-Ziola N. et al. J. Biol. Chem. 2003, 278, No 48: 48245–48250. https://doi.org/10.1074/jbc.M309813200
  15. Evans D. G., Evans D. J. Methods in Enzymology, 1995, 253: 336–360. https://doi.org/10.1016/S0076-6879(95)53029-0