New superacid ZrO2–SiO2–Al2O3 oxide and its activity in the oligomerization of tetrahydrofuran

1Inshina, EI
2Telbiz, GM
1Brei, VV
1Institute for Sorption and Problems of Endoecology of the NAS of Ukraine, Kyiv
2L. V. Pisarzhevskii Institute of Physical Chemistry of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2015, 10:49-54
https://doi.org/10.15407/dopovidi2015.10.049
Section: Chemistry
Language: Ukrainian
Abstract: 
Strong acidic mixed $\rm ZrO_{2}{-}SiO_{2}{-}Al_{2}O_{3}$ oxide has been synthesized by the sol-gel method. It was found that superacid ($H_{0}=-14,52$) sites are formed at the following ion content: $\rm 12\le Zr^{4+}\le 39$,  $\rm 48\le Si^{4+}\le 72$, $\rm 3\le Al^{3+}\le 31$%(at.). According to the IR spectra of adsorbed pyridine and deuterated acetonitrile, the $L$- and $B$-sites are on the surface of $\rm ZrO_{2}{-}SiO_{2}{-}Al_{2}O_{3}$. The generation of superacidity in the $\rm ZrO_{2}{-}SiO_{2}{-}Al_{2}O_{3}$ matrix could be explained by the formation of coordination-unsaturated $\rm Zr^{4+}$ ions as strong Lewis acid sites. It was shown that $\rm ZrO_{2}{-}SiO_{2}{-}Al_{2}O_{3}$ efficiently catalyzes the oligomerization of tetrahydrofuran in the presence of acetic anhydride with 68% yield of polytetramethyleneoxide acetate ($M_{n} = 510$) at 40 ºC.
Keywords: mixed oxides, polymerization of tetrahydrofuran, solid superacid, zirconia
References: 
  1. Tanabe K. Catalysts and Catalytic Processes, Moscow: Mir, 1993 (in Russian).
  2. Corma A., Chem. Rev., 1995, 95, No 3: 559–614. https://doi.org/10.1021/cr00035a006
  3. Ivanov A. V., Kustov L. M., Rus. Chem. Bull., 2000, 49, No 1: 39–45. https://doi.org/10.1007/BF02499062
  4. Brei V. V., Theor. Exp. Chem., 2005, 41, No 3: 165–175 (in Russian). https://doi.org/10.1007/s11237-005-0035-7
  5. Bosman H. J. M., Kruissink E. C., van der Spoel., van den Brink F., J. Catal., 1994, 148: 660–672. https://doi.org/10.1006/jcat.1994.1253
  6. Inshina E. I., Shistka D. V., Telbiz G. M., Brei V. V., Chem. Phys. Technol. Surf., 2012, 3, No 4: 395–400.
  7. Brei V. V., Bodul N. S., Dordij N. K., Catal. and Petrochem., 2008, 16: 14–15 (in Russian).
  8. Prudius S. V., Melezhyk O. V., Brei V. V., Stud. Surf. Sci. Catal., 2010, 175: 233–236. https://doi.org/10.1016/S0167-2991(10)75031-X
  9. Pelmenschikov A. G., van Santen R. A., Janchen J., Meijer E., J. Phys. Chem., 1993, 97, No 42: 11071–11074. https://doi.org/10.1021/j100144a028
  10. Guittet M. J., Crocombette J. P., Gautier-Soyer M., Phys. Rev. B, 2001, 63: 125117. https://doi.org/10.1103/PhysRevB.63.125117
  11. Setoyama T., Kobayashi M., Kabata Y., Kawai T., Nakanishi A., Catal. Today, 2002, 73, No 1: 29–37. https://doi.org/10.1016/S0920-5861(01)00515-6