Biosynthesis of silver nanoparticles using Stevia extracts

1Laguta, IV
1Fesenko, TV
1Stavinskaya, ON
2Shpak, LM
2Dzyuba, OI
1O. O. Chuiko Institute of Surface Chemistry of the NAS of Ukraine, Kyiv
2M.M. Gryshko National Botanic Garden of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2015, 12:97-103
https://doi.org/10.15407/dopovidi2015.12.097
Section: Chemistry
Language: Russian
Abstract: 

Silver nanoparticles are synthesized using Stevia rebaudiana extracts. It is shown that the rate of nanoparticles formation is affected by plant cultivation conditions. It is found that, in the presence of the extract from callus, the formation of nanoparticles occurs faster than in the presence of extracts from plants grown under conditions of ex situ and in vitro. The synthesized silver nanoparticles were studied by UV and IR spectroscopies.

Keywords: biosynthesis, callus, ex situ, in vitro, silver nanoparticles, Stevia extracts
References: 
  1. Iravani S. Green Chem., 2011, 13: 2638–2650. https://doi.org/10.1039/c1gc15386b
  2. Harborne J. B. Biochemistry of phenolic compounds, Moscow: Mir, 1968 (in Russian).
  3. Kalinin F. L., Sarnatskaya V. V., Polishchuk V. E. Methods of tissue culture in physiology and biochemistry, Kyiv: Naukova Dumka, 1980 (in Russian).
  4. Komarova M. N., Nikolaeva L. A., Regir V. G. Phytochemical analysis of medicinal plants: quidelines for laboratory sdudies, Saint-Petersburg: State Chemical-Pharmaceutical Academy, 1998 (in Russian).
  5. Alonso A. M., Domianguez C., Guillean D., Barroso C. G. J. Agric. Food Chem., 2002, 50: 3112–3115. https://doi.org/10.1021/jf0116101
  6. Andreeva V.Yu., Kalinkina G. I. Khimiva rastitel’nogo syr’ya, 2000, No 1: 85–88 (in Russian).
  7. Grodzinskii A. M., Grodzinskii D. M. Brief handbook on plants physiology, Kyiv: Naukova Dumka, 1973 (in Russian).
  8. Ahmad N., Sharmab S., Alama Md. K., Singh V. N., Shamsi S. F., Mehta B. R., Fatma A. Colloids Surf. B, 2010, 81: 81–86. https://doi.org/10.1016/j.colsurfb.2010.06.029
  9. Zhou Y., Lin W., Huang J., Wang W., Gao Y., Lin L., Li Q., Lin L., Du M. Nanoscale Res. Lett., 2010, 5: 1351–1359. https://doi.org/10.1007/s11671-010-9652-8
  10. Gopinath V., Priyadarshini S., Meera Priyadharsshini N., Pandian K., Velusamy P. Mater. Lett, 2013, 91: 224–227. https://doi.org/10.1016/j.matlet.2012.09.102
  11. Laguta I.V., Stavinskaya O. N., Oranskaya E. I., Chernyavskaya T. V. Dopov. Nac. akad. nauk Ukr., 2009, No 12: 152–157 (in Russian).
  12. Tadhani M. B., Patel V. H., Subhash R. J. Food Compos. Anal., 2007, 20: 323–329. https://doi.org/10.1016/j.jfca.2006.08.004
  13. Raut R. W., Lakkakula J. R., Kolekar N. S., Mendhulkar V. D., Kashid S. B. Curr. Nanosci., 2009, 5: 117–122. https://doi.org/10.2174/157341309787314674
  14. Yilmaz M., Turkdemir H., Akif Kilic M., Bayram E., Cicek A., Mete A., Ulug B. Mater. Chem. Phys., 2011, 130: 1195–1202. https://doi.org/10.1016/j.matchemphys.2011.08.068
  15. Khan M., Khan M., Adil S. F., Tahir M. N., Tremel W., Alkhathlan H. Z., Al-Warthan A., Siddiqui M. R. Int. J. Nanomedicine, 2013, 8: 1507–1516.