The group-theoretic analysis for d'Alembert's solutions of the basic equation of exterior ballistics

1Lehenkyi, VI
1Institute of Mathematical Machines and Systems Problems of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2015, 2:14-18
Section: Mathematics
Language: Ukrainian

We consider the basic equation of exterior ballistics and prove that all specializations of the drug function presented by d'Alembert in 1744 transform this equation to some Lie–Sheffers equation. Due to this hidden property, it can be converted to the classical Bernoulli or Riccati equations.

Keywords: ballistics, Bernoulli equation, Riccati equation
  1. d'Alembert J. L. Traite de l'équilibre et du mouvement des fluides, Paris, 1744.
  2. Euler L. Research ballistics, Moscow: Fizmathiz, 1961 (in Russian).
  3. Siacci F. C. r. Acad. Sci., 1901, 132: 1175–1178; 133: 381–382.
  4. Drach J. Ann. sci. Ecole Norm. Super. Ser. 3, 1920, 37: 1–94.
  5. Kourensky M. C. r. Acad. Sci., 1931, 193: 571–572.
  6. Kurenskyy M.K. Flight of a projectile: The main problem of external ballistics of projectile flight, Kyiv: Vud-vo VUAN, 1934 (in Ukrainian).
  7. Kamke E. Reference book on usual differential equations. 4-th ed., Moscow: Nauka, 1971 (in Russian).
  8. Lee S. Theory of groups of transformations. Pt. 3, Moscow: Izhevsk: Izhev. in-t kompiuter. issledovanii, 2013 (in Russian).
  9. Lee S. Symmetries of differential equations. Lectures on continuous groups with geometric and other applications. Vol. 2, Moscow: Izhevsk: Reguliarnaia i haoticheskaia dinamika, 2011 (in Russian).
  10. Yakovenko H. N. Differential equations with fundamental decisions: Sofus Lee et al. Moscow: Fizmatkniha, 2006 (in Russian).