Functionalization of carbon nanotubes using biological molecules of various nature

1Burlaka, OM
1Pirko, Ya.V
2Smertenko, PS
2Kolomys, OF
3Glazunova, VO
3Konstantinova, TE
1Yemets, AI
1Blume, Ya.B
1Institute of Food Biotechnology and Genomics of the NAS of Ukraine, Kyiv
2V.Ye. Lashkaryov Institute of Semiconductor Physics of the NAS of Ukraine, Kyiv
3O. O. Galkin Donetsk Institute for Physics and Engineering of the NAS of Ukraine
Dopov. Nac. akad. nauk Ukr. 2015, 2:137-144
Section: Biology
Language: Ukrainian

In order to expand biotechnological applications of carbon nanotubes (CNTs), the ability of biological molecules to interact with CNTs is studied. We report the formation of stable aqueous polydisperse colloidal systems of SWNTs and MWNTs non-covalently functionalized with several biomolecules — double-stranded DNA, deoxyribonucleotide triphosphates, adenosine triphosphate sodium salt, bovine serum albumin, vitreous body extract proteins and sodium humate. The results of Raman spectroscopy, transmission electron and atomic-force microscopies of functionalized CNTs demonstrating morphological and structural changes in CNTs caused by the functionalization are shown. Mechanisms of non-covalent biomolecules-CNTs interactions are discussed.

Keywords: carbon nanotubes, molecule
  1. Serag M. F., Kaji N., Gaillard C. et al. Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells, ACS Nano, 2011, 5, no.1: 493–499.
  2. Rafsanjani M. S., Alvari A., Samim M. et al. Application of novel nanotechnology strategies in plant biotransformation: a contemporary overview, Recent Pat. Biotechnol., 2012, no.6: 69–79.
  3. Ramos-Perez V., Cifuentes A., Coronas N. et al. Modification of carbon nanotubes for gene delivery vectors, Nanomaterial Interfaces in Biology: Methods and Protocols. Methods in Molecular Biology. Vol. 1025, Eds. P. Bergese, K. Hamad-Schifferli, New York: Springer Science, 2013.
  4. Liu Q., Chen B., Wang Q. et al. Carbon nanotubes as molecular transporters for walled plant cells, Nano Lett., 2009, 9, no.3: 1007–1010.
  5. Karousis N., Tagmatarchis N., Tasis D. Current progress on the chemical modification of carbon nanotubes, Chem. Rev., 2010, 110, no.9: 5366–5397.
  6. Virkutyte J., Varma R. S. Green synthesis of metal nanoparticles: Biodegradable polymers and enzymes in stabilization and surface functionalization, Chem. Sci., 2011, no.2: 837–846.
  7. Geckeler K. E., Premkumar T. Carbon nanotubes: are they dispersed or dissolved in liquids?, Nanosc. Res. Lett., 2011, 6, no.136: 3
  8. Inoue H., Nojima H., Okayama H. High efficiency transformation of Escherichia coli with plasmids, Gene, 1990, no.96: 23–28.
  9. Cheng Q., Debnath S., Gregan E., Byrne H. J. Ultrasound-assisted SWNTs dispersion: effects of sonication parameters and solvent, J. Phys. Chem. C., 2010, no.14: 8821–8827.
  10. Lamprecht C., Danzberger J., Lukanov P. et al. AFM imaging of functionalized doublewalled carbon nanotubes, Ultramicroscopy, 2009, 109, no.8: 899–906.
  11. Shimmel' G. Metodika jelektronnoj mikroskopii, Moskva: Mir, 1972 [in Russian].
  12. Nakashima N., Okuzono S., Murakami H. et al. DNA dissolves single-walled carbon nanotubes in water, Chem. Lett., 2003, 32, no.5: 456–457.
  13. Zorbas V., Smith A. L., Xie H. et al. Importance of aromatic content for peptide/single-walled carbon nanotube interactions, J. Amer. Chem. Soc., 2005, no.127: 12323–12328.