Effect of the concentration on dynamic properties of single-charged electrolytes

1Atamas, NO, 1Bulavin, LA, 1Brytan, A, 1Verbynska, GM
1Taras Shevchenko National University of Kyiv
Dopov. Nac. akad. nauk Ukr. 2015, 2:55-60
https://doi.org/10.15407/dopovidi2015.02.055
Section: Physics
Language: Ukrainian
Abstract: 

The results of the experimental (quasielastic neutron scattering) and theoretical-computational (molecular dynamics) studies of the effect of the concentration on structural and dynamical properties of aqueous solutions of NaCl at T = 300 K are presented. It is experimentally shown that increasing the concentration of the studied system leads to a monotonic decrease of the coefficient of self-diffusion, its components, and the times of sedentary molecules in equilibrium, as confirmed by the results of computer simulation. The mechanisms of formation of the structure of solutions at various concentrations are analyzed, and the quantitative characteristics of a local structure and the diffusion coefficients of components of the system under study are calculated for some separate regions.

Keywords: molecular dynamics, quasielastic neutron scattering, single-charged electrolyte
References: 
  1. Krotenko V.T., Dorosh A. K., Ivanickij P. G. Nejtronnye issledovanija samodiffuzii molekul vody v rastvorah jelektrolitov, Zhurn. struktur. himii, 1992, 33, no.1: 72–75 [in Russian].
  2. Lokotosh T. V., Malomuzh N. P., Pankratov K. P. Kollektivnyj drejf molekul v zhidkostjah po dannym nekogerentnogo rassejanija teplovyh nejtronov, Zhurn. fiz. himii, 2011, 85, no.10: 1892–1895 [in Russian].
  3. Bulavin L. A., Karmazina T. V., Klepko V. V. Nejtronnaja spektroskopija kondensirovannyh sred, Kyiv: Akademperiodika, 2005 [in Russian].
  4. Oskotskij V. S. K teorii kvaziuprugogo rassejanija holodnyh nejtronov v zhidkosti, Fizika tverdogo tela, 1963, 5, no.4: 1082–1085 [in Russian].
  5. Forester T. R. The DL-POLY – 2.0. Reference Manual and Version 2.0 - Ed. T. R. Forester, W. Smith, Warrington: CCLRC, Daresbury Laboratory, 1995.
  6. Schlick T. Molecular modeling and simulation: An interdisciplinary guide - Interdisciplinary Applied Mathematics, Math. Biology, New York: Springer, 2002. https://doi.org/10.1007/978-0-387-22464-0
  7. Allen M. P., Tildesley D. Y. Computer simulation of liquids, Oxford: Clarendon Press, 2010.
  8. Balbuena P. B., Johnston K. P., Rossky P. J. Molecular dynamics simulation of electrolyte solutions in ambient and supercritical water: 1. Ion solvation, J. Phys. Chem., 1996, no.100: 2706–2715. https://doi.org/10.1021/jp952194o