Influence of brassinosteroids on the formation of phosphatidic acid in vivo in wheat

TitleInfluence of brassinosteroids on the formation of phosphatidic acid in vivo in wheat
Publication TypeJournal Article
Year of Publication2015
AuthorsDerevyanchuk, MV, Litvinovskaya, RP, Chornomorchenko, SS, Khripach, VA, Kravets, VS, Kukhar, VP
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2015.04.138
Issue4
SectionBiochemistry
Pagination138-143
Date Published4/2015
LanguageRussian
Abstract

The effect of brassinosteroids (BRs) on the formation of a lipid messenger, phosphatidic acid (PA), is investigated in vivo. It is observed that BRs significantly increase the PA level in 20 min after the treatment of plant tissues with 24-epibrassinolide. Inhibition of 1,2-diacylglycerol kinases decreases the PA accumulation and increases the diacylglycerol pool in response to BRs. BRs induce not only the processes of PA formation, but also its further dephosphorylation into DAG by lipid phosphatases. Our results indicate the BRs involvement in the regulation of a phospholipid signaling and the levels of lipid signaling mediators in plant cells, particularly PA.

Keywordsbrassinosteroids, phosphatidic acid, wheat
References: 

1. Khripach V. et al. Ann. Bot., 2000, 86: 441–447. https://doi.org/10.1006/anbo.2000.1227
2. Kagale S. et al. Planta, 2007, 225: 353–364. https://doi.org/10.1007/s00425-006-0361-6
3. Kaur R. et al. Plant Growth Regul., 2013, 71: 199–205. https://doi.org/10.1007/s10725-013-9820-9
4. Villasuso A. L. et al. Plant Physiol. and Biochem., 2013, 65: 1–8. https://doi.org/10.1016/j.plaphy.2013.01.005
5. McLoughlin F., Testerink C. Front. Plant Sci., 2013, 4: 525. https://doi.org/10.3389/fpls.2013.00525
6. Wimalasekera R. et al. Mol. Plant., 2010, 3: 610–625. https://doi.org/10.1093/mp/ssq005
7. Tang W. et al. Nat. Cell Biol., 2011, 13: 124–131. https://doi.org/10.1038/ncb2151
8. Di Rubbo S. et al. Sci. Signal., 2011, 4: pe25. https://doi.org/10.1126/scisignal.2002046
9. Kocourkova D. et al. J. Exp. Bot., 2011, 62: 3753–3763. https://doi.org/10.1093/jxb/err039
10. Bligh E. G., Dyer W. J. Can. J. Biochem. Physiol., 1959, 37: 911–917. https://doi.org/10.1139/o59-099
11. Pejchar P. et al. New Phytologist., 2010, 188: 150–160. https://doi.org/10.1111/j.1469-8137.2010.03349.x
12. Pettitt T. R. et al. J. Biol. Chem., 1997, 272: 17354– 17359. https://doi.org/10.1074/jbc.272.28.17354
13. Eastmond P. J. et al. The Plant Cell Online, 2010, 22: 2796–2811. https://doi.org/10.1105/tpc.109.071423
14. Wu P. et al. Mol. Plant., 2014, 7: 445–447. https://doi.org/10.1093/mp/sst138