Shadow's problem

1Zelinskii, Yu.B
1Vyhovs'ka, IYu.
1Stefanchuk, MV
1Institute of Mathematics of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2015, 5:15-20
https://doi.org/10.15407/dopovidi2015.05.015
Section: Mathematics
Language: Russian
Abstract: 

The problem of shadow is solved. It is equivalent to the condition for a point to be in the generalized convex hull of a family of compact sets.

Keywords: m-convex set, m-hull of a set, m-semiconvex hull of a set, m-semiconvex set, problem of shadow, simplex
References: 
  1. Zelinskii Yu.B. Multivalued mappings in the analysis, Kyiv: Naukova Dumka, 1993 (in Russian).
  2. Zelinskii Yu.B. Convexity. Selected topics. Proc. of Institute of Mathematics NASU, Kyiv, 2012, Vol. 92 (in Russian).
  3. Khudaiberganov G. On uniformly polynomially convex hull of the union of balls, Moscow, 1982, Manuscript Dep. VINITI 02.21.1982, No 1772–85 (in Russian).
  4. Schaefer H. Topological vector spaces. – Graduate Texts inMathematics, Vol. 3, New York, Berlin: Springer, 1971. https://doi.org/10.1007/978-1-4684-9928-5
  5. Spanier E. Algebraic topology, New York, Berlin: Springer, 1981. https://doi.org/10.1007/978-1-4684-9322-1
  6. Zelinskii Yu.B. Ukr. Math. J., 2002, 54, No 1: 149–153. https://doi.org/10.1023/A:1019753822066
  7. Leichtweiss K. Konvexe Mengen, Berlin, New York: Springer, 1980. https://doi.org/10.1007/978-3-642-95335-4