The solution of the robust feedback synthesis problem for a canonical system

1Korobov, VI, 1Revina, TV
1V. N. Karazin Kharkiv National University
Dopov. Nac. akad. nauk Ukr. 2015, 6:13-18
https://doi.org/10.15407/dopovidi2015.06.013
Section: Mathematics
Language: Russian
Abstract: 

The problems of the global and local robust feedback syntheses of a bounded control for a system with unknown bounded perturbation are considered. Our approach is based on the controllability function method suggested by V.I. Korobov. We have found the largest segment, where the perturbation can vary, and have given a positional control, which steers an arbitrary initial point to the origin in some finite time for any admissible perturbation from this segment. An estimate of the time of motion from an initial point to the origin has been given.

Keywords: controllability function method, positional bounded control, robust feedback synthesis problem, unknown bounded perturbation
References: 
  1. Korobov V. I., Revina T.V. Commun. Math. Anal., 2014, 17, No 2: 217–230.
  2. Revina T.V. Visn. Kharkiv. Univ., Ser. Mat., Prykl. Mat. i Mekh., 2014, 1113, Iss. 70: 140–155 (in Russian).
  3. Korobov V. I. Math. USSR Sb., 1980, 37, No 4: 535–557. https://doi.org/10.1070/SM1980v037n04ABEH002094
  4. Korobov V. I. Sov. Math., Dokl., 1979, 20: 1112–1116.
  5. Korobov V. I. The controllability function method, Moscow, Izhevsk: R&C Dynamics, 2007 (in Russian).
  6. Korobov V. I., Sklyar G.M. Differ. Equ., 1990, 26, No 11: 1422–1431.
  7. Rodoumta K., Bowong S. Appl. Math. Sci., 2007, 1, No 6: 267–279.
  8. Polyakov A., Efimov D., Perruquetti W. Finite-time stabilization using implicit Lyapunov function technique, Proc. of 9th IFAC Symp. on Nonlinear Control Systems, Toulouse, France: IFAC Publ., 2013: 140–145. https://doi.org/10.3182/20130904-3-fr-2041.00043
  9. Korobov V. I. Differ. Equ., 1987, 23, No 2: 169–175.
  10. Korobov V. I., Gavrylyako V.M. Visn. Kharkiv. Univ., Ser. Mat., Prykl. Mat. i Mekh., 2005, 711, Iss. 55: 23–27 (in Russian).
  11. Revina T.V. Dinamichiskie Sistemy, 2008, Iss. 25: 83–93 (in Russian).
  12. Bowong S., Moukam Kakmeni F.M. Phys. Lett., 2003, A316: 206–217. https://doi.org/10.1016/S0375-9601(03)01152-6
  13. Bhat S. P., Bernstein D. S. SIAM J. Control and Optimization, 2000, 38, No 3: 751–766. https://doi.org/10.1137/S0363012997321358
  14. Ding S., Qian C., Li S. Global finite-time stabilization of a class of upper-triangular systems. Proc. of the Amer. Control Conf., Baltimore, MD, USA, June 30 – July 2, 2010: 4223–4228.
  15. Horn R.A., Johnson Ch.R. Matrix analysis, Cambridge, 1985. https://doi.org/10.1017/CBO9780511810817