Nanostructurization of Si and GaAs by acoustic cavitation in liquid nitrogen

1Savkina, RK
1Smirnov, AB
1V.Ye. Lashkaryov Institute of Semiconductor Physics of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2015, 7:70-78
https://doi.org/10.15407/dopovidi2015.07.070
Section: Physics
Language: Ukrainian
Abstract: 

The properties of the Si and GaAs samples subjected to cavitation impacts have been studied. It is shown that the high-intensity (15 W/cm2) high-frequency (1÷6 MHz) sonication in liquid nitrogen induces changes of the physical, chemical, and structural properties of the semiconductor surface. The optic and atomic force microscopy techniques, as well as energy dispersive X-ray spectroscopy and photoresponse spectroscopy, are used. The experimental study demonstrates the nanostructure formation and a change of the chemical composition at the semiconductor surface. It is found that a significant rise in the value and the expansion of a spectral range of photosensitivity take place after the cavitation treatment.

Keywords: III–V semiconductors, micro- and nanoscale pattern formation, photovoltaics, silicon, ultrasonic cavitation
References: 
  1. Xu H., Zeiger B.W., Suslick K. S. Chem. Soc. Rev., 2013, 42: 2555–2567. https://doi.org/10.1039/C2CS35282F
  2. Rosenberg L.D. (Ed.), High-intensity ultrasonic fields, New York: Plenum Press, 1971.
  3. Miller D. L. Progress in biophysics and molecular biology, 2007, 93, No 1: 314–330. https://doi.org/10.1016/j.pbiomolbio.2006.07.027
  4. Chemat F., Huma Z.-E., Khan M.K. Ultrasonics Sonochemistry, 2011, 18, No 4: 813–835. https://doi.org/10.1016/j.ultsonch.2010.11.023
  5. Kanegsberg B., Kanegsberg E. (Ed.), Critical cleaning process applications management safety and environmental concerns, Boca Raton: CRC Press, 2011.
  6. Savkina R.K. Recent Patents on Electrical & Electronic Engineering, 2013, 6, No 3: 157–172. https://doi.org/10.2174/22131116113066660008
  7. Arata Y., Zhang Y.-Ch. Appl. Phys. Lett., 2002, 80, No 13: 2416–2418. https://doi.org/10.1063/1.1465110
  8. Nomura S., Toyota H. Appl. Phys. Lett., 2003, 83, No 22: 4503–4505. https://doi.org/10.1063/1.1631062
  9. Khachatryan A.Kh., Aloyan S.G., May P.W., Sargsyan R., Khachatryan V.A., Baghdasaryan V. S. Diamond & Related Materials, 2008, 17: 931–936. https://doi.org/10.1016/j.diamond.2008.01.112
  10. Savkina R.K., Smirnov A.B. J. Phys. D: Appl. Phys., 2010, 43: 425301. https://doi.org/10.1088/0022-3727/43/42/425301
  11. Savkina R.K. Funct. Materials, 2012, 19, No 1: 38–43.
  12. Savkina R.K., Smirnov A. B. Tech. Phys. Lett., 2015, 41, No 2: 164–167. https://doi.org/10.1134/S1063785015020248
  13. Savkina R.K., Smirnov A.B., Kryshtab T., Kryvko A. Materials Science in Semiconductor Processing, 2015, 37: 179–184. https://doi.org/10.1016/j.mssp.2015.02.066
  14. Tisch U., Finkman E., Salzman J. Appl. Phys. Lett., 2002, 81: 463–465. https://doi.org/10.1063/1.1494469