Participation of actin filaments in the response of Arabidopsis thaliana root cells to low-temperature action

1Plohovska, SG
2Zaslavsky, VA
1Yemets, AI
1Blume, Ya.B
1Institute of Food Biotechnology and Genomics of the NAS of Ukraine, Kyiv
2M. G. Kholodny Institute of Botany of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2015, 7:136-142
https://doi.org/10.15407/dopovidi2015.07.136
Section: Biochemistry
Language: Russian
Abstract: 

The effect of the low temperature (4 ºC) on the organization of actin filaments (microfilaments) of cells of different growth zones of the root of Arabidopsis thaliana (L.) is studied. For the visualization of these structures and detailed in vivo analysis of the changes in their structure, the line A. thaliana expressing the chimeric gene gfp-abd2-gfp was used. It is found that cold treatment inhibits growth of the main root and gives its morphology, causing a large number of deformed (ectopic) root hairs in the zone of differentiation. The temporal relationship of the disorientation and the organization of actin filaments and the detected changes of growth and morphology of roots under conditions of cold factor is shown. It is found that the most sensitive to the effects of the cold actin filaments are meristematic cells and all epidermal cells of the root zone of A. thaliana.

Keywords: actin filaments, low temperature, microtubules, sytoskeleton
References: 
  1. Khokhlova L. P., Olinevich O.V., Raudaskoski M. Cell Biol. Int., 2003, 27, No 3: 211–212. https://doi.org/10.1016/S1065-6995(02)00336-0
  2. Ruelland E., Zachowski A. Environ. Exp. Bot., 2010, 69, No 3: 225–232. https://doi.org/10.1016/j.envexpbot.2010.05.011
  3. Baskin T. I. The cytoskeleton, Biochemistry and molecular biology of plants, Eds. B.B. Buchanan,W. Gruissem, R.L. Jones, Rockville, Courier Companies, 2000: 202–258.
  4. Barlow W.P., Balŭska F. Plant Mol. Biol., 2000, 51: 289–322.
  5. Mizuno K. Plant Physiol., 1992, 100, No 2: 740–748. https://doi.org/10.1104/pp.100.2.740
  6. Zhao J. L., Li X. J., Zhang H., Li Y. Plant Cell Rep., 2003, 22, No 1: 32–37. https://doi.org/10.1007/s00299-003-0656-z
  7. Balŭska F., Mancuso S., Volkmann D., Barlow P.W. Trends Plant Sci., 2010, 15, No 7: 402–408. https://doi.org/10.1016/j.tplants.2010.04.007
  8. Sheremet Ya.A., Yemets A. I., Blume Ya.B. Cytology and Genetics, 2012, 46, No 1: 1–8. https://doi.org/10.3103/S0095452712010112
  9. Farajalla M.R., Gulick P. J. Genome, 2007, 50: 502–510. https://doi.org/10.1139/G07-027
  10. Aström H., Virtanen I., Raudaskoski M. Protoplasma, 1991, 160: 99–107. https://doi.org/10.1007/BF01539961
  11. Pokorna J., Schwarzerova K., Zelenkova S., Petrasek J., Janotova I., Capkova V. Plant, Cell and Environment, 2004, 27: 641–653. https://doi.org/10.1111/j.1365-3040.2004.01186.x
  12. Wang X., Yang P., Zhang X., Xu Y., Kuang T., Shen S., He Y. Proteomics, 2009, 9, Iss. 19: 4529–4538. https://doi.org/10.1002/pmic.200900062
  13. Wang Y.-S., Yoo C.-M., Blancaflor E.B. New Phytologist., 2008, 177: 525–536.
  14. Voigt B., Timmers A.C. J., Samaj J., Muller J., Baluska F., Menzel D. Eur. J. Cell Biol., 2005, 84: 95–608.
  15. Quader H. Cytoskeleton: Microtubules, Progress in Botany, Heidelberg, Berlin: Springer, 1998: 374–395.