Effect of molecular weight on the properties of polyethylene glycol doped by multiwalled carbon nanotubes

1Bulavin, LA
1Melnyk, IA
2Goncharuk, AI
3Klepko, VV
2Lebovka, NI
3Lysenkov, EA
1Taras Shevchenko National University of Kyiv
2F.D. Ovcharenko Institute of Biocolloidal Chemistry of the NAS of Ukraine, Kyiv
3Institute of Macromolecular Chemistry of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2015, 8:72-78
https://doi.org/10.15407/dopovidi2015.08.072
Section: Physics
Language: Ukrainian
Abstract: 
The differential scanning calorimetry and electrical conductivity methods are used to study the influence of doping multiwalled carbon nanotubes (NTs) on the properties of polyethylene glycol (PEG) of different molecular weights, $M_{w}$ (PEG-400, PEG-1000, PEG-10000). Dependences of the degree of crystallinity of polymers and the temperature behavior of conductivity on the concentration of NTs are researched. The obtained data indicate a strong influence of the molecular weight of PEG on the spatial distribution of NTs and the electrical conductivity of researched systems.
Keywords: degree of crystallinity, DSC, electrical conductivity, microstructure, multiwalled carbon nanotubes, polyethylene glycol
References: 
  1. Christie A.M., Lilley S.J., Staunton E., Andreev Y.G., Bruce P.G. Nature, 2005, 433: 50–53. https://doi.org/10.1038/nature03186
  2. Lysenkov E.A., Gomza Y.P., Klepko V.V. Polymer J., 2010, 32(3): 223–228.
  3. Lysenkov E.A., Gomza Y.P., Davidenko V.V., Klepko V.V. Phys. Condens. Macromol. Syst., 2010, 14: 15–20.
  4. Lysenkov E.A., Klepko V.V., Yakovlev Y.V. Nanostr. Mat. Sci., 2013, 3–4: 46–54.
  5. Lysenkov E.A., Gomza Y.P., Klepko V.V., Kunitsky Y.A. Phys. Chem. Solid. State, 2010, 11(2): 361–366.
  6. Lebovka N.I., Lysenkov E.A., Goncharuk A.I., Gomza Y.P., Klepko V.V., Boiko Y.P. J. Compos. Mater., 2011, 45(24): 2555–2566. https://doi.org/10.1177/0021998311401107
  7. Wunderlich B. The Microscopic Structure of Crystals, Ed. B. Wunderlich., Macromol. Phys., New York: Academic Press, 1973: 21–177.
  8. Stauffer D., Aharony A. Introduction to Percolation Theory, London: Taylor & Francis, 1992.– 192.