Partial ionization cross-sections of rubidium atom by electron impact

1Roman, VI
1Kupliauskiene, AV
1Borovik, AA
1Institute of Electron Physics of the NAS of Ukraine, Uzhgorod
Dopov. Nac. akad. nauk Ukr. 2015, 8:79-83
https://doi.org/10.15407/dopovidi2015.08.079
Section: Physics
Language: Ukrainian
Abstract: 

The partial ionization cross-sections of the 5s, 4p6, 4s2, 3d10 shells of a rubidium atom are calculated by using the relativistic distorted-wave, Coulomb-Born and binary–encounter–dipole approximations for the incident electron energies from the threshold up to 600 eV. The comparative analysis of the data with the experimental autoionization cross-section and the total single ionization cross-section of a rubidium atom is performed. Each of the considered approximations reflects satisfactorily the direct ionization of rubidium atom only in the certain energy regions, namely, the distorted-wave approximation at low impact energies, and the binary–encounter–dipole approximation at high impact energies.

Keywords: atom, autoionization, cross-section, excitation, ionization
References: 
  1. Tate J., Smith P. Phys. Rev., 1934, 46: 773–776. https://doi.org/10.1103/PhysRev.46.773
  2. Zapesochny I. P., Aleksakhin I. S. Sov. Phys. JETP, 1969, 28: 41–45.
  3. Nygaard K. J. Phys. Rev. A, 1975, 11: 1475–1478. https://doi.org/10.1103/PhysRevA.11.1475
  4. Lukomski M., Sutton S., Kedzierski W., Reddish T. J., Bartsehat K., Bartlett P. L., Bray I., Stelbovies A.T., MeConkey J. Phys. Rev. A, 2006, 74: 032708–032713.
  5. Borovik A., Grum-Grzhimailo A., Bartschat K., Zatsarinny O. J. Phys. B, 2005, 38: 1081–1092. https://doi.org/10.1088/0953-4075/38/8/001
  6. Borovik A., Kupliauskiene A., Zatsarinny O. J. Phys. B, 2013, 45: 215201–215206. https://doi.org/10.1088/0953-4075/46/21/215201
  7. Borovik A., Roman V., Kupliauskiene A. J. Phys. B, 2012, 45: 045204–045213. https://doi.org/10.1088/0953-4075/45/4/045204
  8. Borovik A., Roman V., Kupliauskiene A. Dopov. Nac. akad. nauk Ukr., 2013, No 3: 58–64 (in Ukrainian).
  9. Kupliauskiene A., Kerevicius G. Phys. Scr, 2013, 88: 065312–065319, https://doi.org/10.1088/0031-8949/88/06/065305
  10. Gu. M. F. Can. J. Phys., 2008, 86: 675–689, https://doi.org/10.1139/P07-197
  11. Kim Y., Migdalek J., Siegel W., Bieron J. Phys. Rev. A, 1962, 57: 246–254. https://doi.org/10.1103/PhysRevA.57.246
  12. McGuire E. J. Phys. B, 1997, 30: 1563–1587.
  13. Bartlett P., Stelbovics A. At. Data and Nucl. Data Tabl., 2004, 86: 235–265. https://doi.org/10.1016/j.adt.2003.11.006
  14. Sansonetti J. E., Martin W.C. J. Phys. Chem. Ref. Data, 2005, 34, No 4: 1559–2259. https://doi.org/10.1063/1.1800011