Interaction of adsorbed barium atoms with the surface of nanothick chromium oxide films

1Zasimovich, IN
1Klimenko, EV
1Starovojtova, LN
1Naumovets, AG
1Institute of Physics of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2015, 9:59-66
https://doi.org/10.15407/dopovidi2015.09.059
Section: Physics
Language: Ukrainian
Abstract: 

Auger-electron spectroscopy and work function measurements are used to investigate the adsorption of barium onto the surface of nanothick chromium oxide films grown on the (110) molybdenum surface. Strong redox interaction of barium with chromium oxide films, which leads to the formation of barium oxide and a partial reduction of chromium oxide, is found. We investigated the influence of the thickness and the morphology of chromium oxide films on the oxidizing ability of such films with respect to adsorbed barium. The strong effect of the substrate Mo(110) – chromium oxide film interface condition on the oxidizing ability of such film is proved experimentally. These results indicate the possibility to affect the surface properties of nanothick oxide films by changing their thickness, morphology, or substrate – oxide film interface conditions.

Keywords: adsorption, Auger-electron spectroscopy, interface, oxide films, redox reaction
References: 
  1. Freund H-J. Surf. Sci, 2002, 500: 271–299. https://doi.org/10.1016/S0039-6028(01)01543-6
  2. Freund H-J. Surf. Sci, 2007, 601: 1438–1442. https://doi.org/10.1016/j.susc.2007.01.025
  3. Kryukov A. I., Stroyuk A. L., Kuchmiy S.Ya., Pokhodenko V. D. Nanophotocatalysis, Kyiv: Academperiodika, 2013: 618.
  4. Pacchioni G., Giordano L., Baistrocchi M. Phys. Rev. Lett: 2005, 94: 22610 4-1–226104-4.
  5. Klimenko E. V., Starovojtova L. N., Zasimovich I. N., Naumovets A. G. Mater. Sci. and Eng. Technology, 2009, 4: 273–276.
  6. Fedorus A. G., Naumovets A. G., Vedula Yu. S. Phys. Stat. Sol, 1972, A 13: 445–446.
  7. Ekelund S., Leygraf C. A. Surf. Sci., 1973, 40: 179–199. https://doi.org/10.1016/0039-6028(73)90061-7
  8. Cazacu A., Murphy S., Shvets I. V. Phys. Rev, 2006, B73: 045413-1–045413-7.
  9. Haas G. A., Marrian C. R. K., Shin A. Appl. Surf. Sci., 1983, 16: 125–138. https://doi.org/10.1016/0378-5963(83)90063-6
  10. Bender M., Yakovkin I. N., Freund H.-J. Surf. Sci, 1996, 365: 394–402. https://doi.org/10.1016/0039-6028(96)00742-X
  11. Zasimovich I. N., Klimenko E. V., Naumovets A. G., Starovojtova L. N., Yakovkin I. N. Ukr. J. Phys., 2005, 50: 1381–1384.
  12. Haas G. A., Shin A. Appl. Surf. Sci, 1988, 13: 239–252. https://doi.org/10.1016/0169-4332(88)90064-5
  13. Vlachos D., Kamaratos M., Foulias S. D. J. Phys.: Condens. Matter, 2006,18: 699–706. https://doi.org/10.1088/0953-8984/18/30/005
  14. Tung R. T. Appl. Phys. Rev., 2014, 1, 011304: 1–55.