The cladistic analysis of serine/threonine protein kinase KIN10 and peculiarities of its an expression in different organs of Arabidopsis thaliana

1Krasnoperova, EE
1Isayenkov, SV
1Karpov, PA
1Yemets, AI
1Blume, Ya.B
1Institute of Food Biotechnology and Genomics of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2016, 1:81-91
https://doi.org/10.15407/dopovidi2016.01.081
Section: Biology
Language: Ukrainian
Abstract: 

The cladistic analysis and the phylogenetic tree construction of the closest homologs of protein kinase KIN10 are performed. The obtained results have shown the membership of KIN10 and its two closest homologs in plants (KIN11 (P92958) and Akin11 (Q9FLZ3)) to the unique subfamily of protein kinases SnRK1. In addition, the expression level of KIN10 gene in different plant organs are characterized. The highest level of KIN10 transcripts is observed in the green photosynthetic part of the plant, where KIN10 protein kinase regulates the biosynthetic and signaling processes.

Keywords: cladistic analysis, closest homologs, gene expression, KIN10, phylogenetic tree, serine-threonine protein kinases
References: 
  1. Mohannath G., Jackel J. N., Lee Y. H., Buchmann C., Wang H., Patil V., Adams A. K., Bisar D. M. PLoS One, 2014, 9, No 1: e87592. doi: https://doi.org/10.1371/journal.pone.0087592, PMid:24498147 PMCid:PMC3907550
  2. Halford N. G., Hey S., Jhurreea D., Laurie S., McKibbin R. S., Paul M., Zhang Y. J. Exp. Bot., 2003, 54: 467–475. doi: https://doi.org/10.1093/jxb/erg038, PMid:12508057
  3. Halford N. G., Hardie D. G. Plant Mol. Biol., 1998, 37: 735–748. doi: https://doi.org/10.1023/A:1006024231305, PMid:9678569
  4. Son S., Oh C.J., An C.S. Plant Pathol. J., 2014, 30, Iss. 3: 269–278. doi: https://doi.org/10.5423/PPJ.OA.06.2014.0061, PMid:25289013 PMCid:PMC4181108
  5. Baena-González E., Sheen J. Trends Plant Sci., 2008, 9: 474–482. doi: https://doi.org/10.1016/j.tplants.2008.06.006, PMid:18701338 PMCid:PMC3075853
  6. Lawlor D. W., Paul M. J. Front. Plant Sci., 2014, 5: 418–432. doi: https://doi.org/10.3389/fpls.2014.00418, PMid:25202319 PMCid:PMC4142875
  7. Nunes C., O'Hara L. E., Primavesi L. F., Delatte T. L., Schluepmann H., Somsen G. W., Silva A. B., Fevereiro P. S., Wingler A., Paul M. J. Plant Physiol., 2013, 162, No 3: 1720–1732. doi: https://doi.org/10.1104/pp.113.220657, PMid:23735508 PMCid:PMC3707538
  8. Jeong E.-Y., Seo P. J., Woo J. C., Park C.-M. BMC Plant Biol., 2015, 15, No 1: 110–123. doi: https://doi.org/10.1186/s12870-015-0503-8, PMid:25929516 PMCid:PMC4416337
  9. Fragoso S., Espíndola L., Páez-Valencia J., Gamboa A., Camacho Y., Martínez-Barajas E., Coello P. Plant Physiol., 2009, 149, No 4: 1906–1916. doi: https://doi.org/10.1104/pp.108.133298, PMid:19211700 PMCid:PMC2663738
  10. Karpov P. A., Nadezhdina E. S., Yemets A. I., Blume Ya. B. Moscow Univ. Biol. Sci. Bull., 2010, 65: 213–216. doi: https://doi.org/10.3103/S0096392510040267
  11. Kjaersgârd I. V., Jespersen H. M., Rasmussen S. K., Welinder K. G. Plant Mol. Biol., 1997, 33, No 4: 699–708. doi: https://doi.org/10.1023/A:1005707813801, PMid:9132061
  12. Sato S., Kaneko T., Kotani H., Nakamura Y., Asamizu E., Miyajima N., Tabata S. DNA Res., 1998, 5: 41–54. doi: https://doi.org/10.1093/dnares/5.1.41, PMid:9628582
  13. Littler D. R., Walker J. R., Davis T., Wybenga-Groot L. E., Finerty PJ. Jr., Newman E., Mackenzie F., Dhe-Paganon S. Acta. Crystallogr. Sect. F. Struct. Biol. Cryst. Commun., 2010, 66: 143–151. doi: https://doi.org/10.1107/S1744309109052543, PMid:20124709 PMCid:PMC2815679
  14. Bright N. J., Carling D., Thornton C. J. Biol. Chem., 2008, 22: 14946–14954. doi: https://doi.org/10.1074/jbc.M710381200, PMid:18339622 PMCid:PMC3258900
  15. Matenia D., Mandelkow E. M. Trends Biochem. Sci., 2009: 34: 332–342. doi: https://doi.org/10.1016/j.tibs.2009.03.008, PMid:19559622