MD simulations of Mycobacterium tuberculosis tyrosyl-tRNA synthetase in complex with SB-219383 inhibitor using QM/MM approach

1Mykuliak, VV, 2Voiteshenko, IS, 1Kornelyuk, AI
1Institute of Molecular Biology and Genetics of the NAS of Ukraine, Kyiv
2Institute of High Technologies, Taras Shevchenko National University of Kyiv
Dopov. Nac. akad. nauk Ukr. 2016, 1:99-104
https://doi.org/10.15407/dopovidi2016.01.099
Section: Biophysics
Language: Ukrainian
Abstract: 

Mycobacterium tuberculosis tyrosyl-tRNA synthetase (MtTyrRS) is one of the key enzymes at the pre-ribosomal step of protein synthesis. Therefore, its inhibition is a promising way for the development of new antibiotics. Effective and one of the most studied bacterial TyrRS inhibitors is SB-219383 compound. We have studied the nature of the interactions between SB-219383 and MtTyrRS using the hybrid approach of QM/MM simulations. In particular, a special attention has been paid to the identification of hydrogen bonds and their structural and physico-chemical parameters.

Keywords: inhibitor, Mycobacterium tuberculosis, QM/MM approach, tyrosyl-tRNA synthetase
References: 
  1. Odynets K. A., Kornelyuk A. I. The Ukrainian Biochemical Journal, 2008, 80, No 5: 62–75 (in Ukranian).
  2. Bonnefond L., Giegé R., Rudinger-Thirion J. Biochimie, 2005, 87, No 9-10: 873–883. doi: https://doi.org/10.1016/j.biochi.2005.03.008, PMid:16164994
  3. Stefanska A. L., Coates N. J., Mensah L. M., Pope A. J., Ready S. J., Warr S. R. J. Antibiot. (Tokyo), 2000, 53, No 4: 345–350. doi: https://doi.org/10.7164/antibiotics.53.345
  4. Mykuliak V. V., Kornelyuk A. I. Biopolymers and Cell, 2014, 30, No 2: 157–162. doi: https://doi.org/10.7124/bc.000890
  5. Mykuliak V. V., Kornelyuk A. I. Reports of the National Academy of Sciences of Ukraine, 2014, 6: 156–159 (in Ukranian). doi: https://doi.org/10.15407/dopovidi2014.06.156
  6. Mykuliak V. V., Dubey I. Ya., Kornelyuk A. I. Reports of the National Academy of Sciences of Ukraine, 2014, 10: 167–174 (in Ukranian). doi: https://doi.org/10.15407/dopovidi2014.10.167
  7. Páll S., Abraham M.J., Kutzner C., Hess B., Lindahl E. Solving Software Challenges for Exascale, Cham, Switzerland: Springer, 2015: 3–27.
  8. Neese F. WIREs Comput. Mol. Sci., 2012, 2, Iss. 1: 73–78. doi: https://doi.org/10.1002/wcms.81
  9. Hornak V., Abel R., Okur O., Strockbine B., Roitberg A., Simmerling C. Proteins, 2006, 65, No 3: 712–725. doi: https://doi.org/10.1002/prot.21123, PMid:16981200 PMCid:PMC4805110
  10. Bussi G., Donadio D., Parrinello M. J. Chem. Phys., 2007, 126: 014101. doi: https://doi.org/10.1063/1.2408420, PMid:17212484
  11. Beider R. Atoms in molecules. Quantum theory, Moscow, Mir: 2001 (in Russian).
  12. Bader R., Nguyen-Dang T. T., Tal Y. J. Chem. Phys., 1979, 70, No 9: 4316–4329. doi: https://doi.org/10.1063/1.438006
  13. Bader R. F. W., Essen H. J. Chem. Phys., 1984, 80, No 5: 1943–1960. doi: https://doi.org/10.1063/1.446956
  14. Espinosa E., Molinsa E., Lecomte C. Chem. Phys. Lett., 1998, 285, No 3–4: 170-173. doi: https://doi.org/10.1016/S0009-2614(98)00036-0
  15. Keith T. A. AIMAll (Version 10.05.04). – 2010. – Resource access mode: http://aim.tkgristmill.com