Water purification from dyes by modified ceramic membranes made of clay minerals

1Dulneva, TYu., 1Chirkova, KM, 1Kucheruk, DD, 1Goncharuk, VV
1A. V. Dumansky Institute of Colloid and Water Chemistry of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2016, 1:110-116
https://doi.org/10.15407/dopovidi2016.01.110
Section: Ecology
Language: Ukrainian
Abstract: 

The basic laws of the process of water purification from anionic and cationic dyes are identified by the example of direct scarlet and brilliant green by using domestic microfiltration tubular ceramic membranes based on clay minerals are modified by hydroxocomplexes Al3+. The high efficiency of water purification from direct scarlet in a wide pH range (4.8–9.5) and brilliant green in acidic (pH 4.8–5.2) and alkaline (pH 9.0–9.5) environments. The feasibility to use such membranes for the water purification from anionic and cationic dyes under certain conditions is substantiated.

Keywords: cationic and the direct dyes, dynamic membrane, hydroxocomplexes Al3+, microfiltration, modification ceramic membranes, water purification
References: 
  1. Baker R. W. Membrane Technology and Applications, Chichester: Wiley, 2004. doi: https://doi.org/10.1002/0470020393
  2. The membranes and membrane technology, Ed. A. B. Yaroslavtsev, Moskva: Nauchnyi mir, 2013 (in Russian).
  3. Isaeva V. I., Barkova M. I., Kucherov A. V. et al. Rossiiskie Nanotekhnologii, 2014, 9, No 7–8: 57–63 (in Russian); English translation: Isaeva V. I., Barkova M. I., Kucherov A. V. et al. Nanotechnologies in Russia, 2014, Vol. 9, 7: 416–422. doi: https://doi.org/10.1134/S1995078014040089
  4. Gascon J., Aguado S., Kapteyijn F. Microporous Mesoporous Mater, 2008, 113: 132–138. doi: https://doi.org/10.1016/j.micromeso.2007.11.014
  5. Rudenko L. I., Dzhuzha O. V., Han V. E. Radiochimiya, 2007, 49, No 1: 85–88 (in Russian).
  6. Goncharuk V. V., Kucheruk D. D., Balakina M. N., Dulneva T. Y. Himiya i tehnologiya vody, 2009, 31, No 6: 688–702 (in Russian); English translation: Goncharuk V. V., Kucheruk D. D., Balakina M. N. et al. J. Water Chem. Technol., 2009, Vol. 31, 6: 396-404. doi: https://doi.org/10.3103/S1063455X09060083
  7. Rudenko L. I., Dzhuzha O. V., Khan V. E., Koval'chuk S. I. Reports of the National Academy of Sciences of Ukraine, 2007, 6: 139–143 (in Ukrainian).
  8. Dulneva T.Yu., Titoruk G. N., Kucheruk D. D., Goncharuk V. V. Himiya i tehnologiya vody, 2013, 35, No 4: 298–306 (in Russian); English translation: Dul’neva T. Y., Titoruk G. N., Kucheruk D. D. et al. J. Water Chem. Technol., 2013, 35, 4: 165-169. doi: https://doi.org/10.3103/S1063455X13040048
  9. Kocharov P. G. Theoretical Foundations of reverse osmosis, Moskva: RHTU im. Mendeleeva, 2007 (in Russian).
  10. Kucheruk D. D. Himiya i tehnologiya vody, 1991, 13, No 7: 664–669 (in Russian).
  11. Karelin V. A. Water treatment. Physical and chemical bases of the processes of water treatment, Tomsk: Izd. Tomskogo Polytechnicheskogo Universiteta, 2012 (in Russian).