Investigation of the hydrodynamic stability of a flow in the porous medium based on the renormalization group method

1Avramenko, AA, 1Dmytrenko, NP, 1Tyrinov, AI
1Institute of Engineering Thermophysics of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2016, 1:47-56
https://doi.org/10.15407/dopovidi2016.01.047
Section: Heat Physics
Language: Russian
Abstract: 

Using the renormalization group method, the advanced microscopic turbulence model for porous media is developed. Based on this model, an expression for the effective kinematic viscosity with accounting the porosity is derived. The nonlinear characteristics of the transition from the laminar flow to the turbulent one, namely, the critical values of Darcy number and porosity, are obtained.

Keywords: instability, mathematical model, porosity, renormalization analysis, turbulence
References: 
  1. Avramenko A. A., Kuznetsov A. V., Basok B. I., Blinov D. G. Phys. Fluids, 2005, 17: 094 102–1–094 102–6.
  2. Avramenko A. A., Kuznetsov A. V., Nield D. A. J. Porous Media, 2007, 10: 435–442. doi: https://doi.org/10.1615/JPorMedia.v10.i5.20
  3. Avramenko A. A., Kuznetsov A. V. Transrort in Porous Media, 2006, 63: 175–193. doi: https://doi.org/10.1007/s11242-005-4425-z
  4. Antohe, B. V., Lage, J. L. International J. of Heat and Mass Transfer, 1997, No 40: 3013–3024.
  5. Avramenko A. A. Group methods in thermal physics, Kyiv: Nauk. Dumka, 2003 (in Russian).
  6. Forster D., Nelson D. R., Stephen M. J. Phys. Rev. A., 1977, 16, No 2: 732–749. doi: https://doi.org/10.1103/PhysRevA.16.732
  7. McComb W. D. The physics of fluid turbulence, Oxford: Clarendon Press, 1992.
  8. Fournier J. D., Frisch U. Phys. Rev. A., 1983, 28, No 2: 1000–1002. doi: https://doi.org/10.1103/PhysRevA.28.1000
  9. Avramenko A. A., Basok B. I., Dmitrenko N. P. et al. Renomalizacionno-gruppovoi analiz turbulentnosti, Kyiv: VPC "Ekspres", 2013 (in Russian).
  10. Nield D.A., Bejan A. Convection in porous media, New York: Springer, 2006. PMCid:PMC4092590