Magnetic-luminescent nanocomposite CoFe2O4@SiO2@Gd2O3 : Eu2O3 : synthesis, characterization, and engulfment by macrophages

1Vasylenko, IV, 1Yakovenko, AV, 2Yefremenko, DS, 2Telegeeva, PG, 2Dybkov, MV, 2Telegeev, GD
1L.V. Pisarzhevskii Institute of Physical Chemistry of the NAS of Ukraine, Kyiv
2Institute of Molecular Biology and Genetics of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2016, 10:88-93
https://doi.org/10.15407/dopovidi2016.10.088
Section: Biophysics
Language: Ukrainian
Abstract: 

Multifunctional magnetic-luminescent nanocomposite CoFe2O4@SiO2@Gd2O3 : Eu2O3 is synthesized by the co-precipitation of salts of europium(III) and gadolinium(III) on a magnetic core CoFe2O4@SiO2 with the further thermal decomposition. The structure, phase, and luminescence properties are studied, by using the transmission electron microscopy (TEM), X-ray diffraction, and photoluminescent spectroscopy. The composite is tested for the survival of J774 macrophages and its engulfment by phagocytosis, by using trypan blue and acridine orange, respectively. Composite nanoparticles are spheres with a mean diameter of 200 nm according to the TEM images. Characteristic intensive red photoluminescent bands of Eu3+ ions are observed. Gadolinium oxide is a necessary component to prevent the Eu3+ luminescence concentration quenching. Due to luminescent and ferromagnetic properties, high survival, and phagocytic index, such na no composites are attractive for theranostics, in particular, cancer diagnostics, treatment by local hyperthermia, and for targeted drug delivery.

Keywords: multifunctional magnetic-luminescent, nanocomposite, phagocytosis, surviva
References: 
  1. Wierucka M., Biziuk M. Trends Analyt. Chem., 2014, 59: 50-58. https://doi.org/10.1016/j.trac.2014.04.007
  2. Liu J., Huang C., He Q. Sci. Adv. Mater., 2015, 7, No 4: 672-685. https://doi.org/10.1166/sam.2015.1887
  3. Verma J., Lal S., Van Noorden C.J. Int. J. Nanomedicine, 2014, 9: 2863-2877.
  4. Mou X., Ali Z., Li S., He N. J. Nanosci. Nanotechnol., 2015, 15, No 1: 54-62. https://doi.org/10.1166/jnn.2015.9585
  5. Felton C., Karmakar A., Gartia Y. et al. Drug Metab. Rev., 2014, 46, No 2: 142-154. https://doi.org/10.3109/03602532.2013.876429
  6. Sun H.-T., Sakka Y. Sci. Technol. Adv. Mater., 2014, 15, No 2: 1-13.
  7. Yao J., Yang M., Duan Y. Chem. Rev., 2014, 114, No 12: 6130-6178. https://doi.org/10.1021/cr200359p
  8. Wadajkar A.S., Menona J.U., Kadapure T. et al. Recent Pat. Biomed. Eng., 2013, 6, No 1: 47-57. https://doi.org/10.2174/1874764711306010007
  9. Vasylenko I.V., Gavrilenko K.S., Kotenko I.E. et al. Theor. Exp. Chem., 2014, 50, No 4: 226-231. https://doi.org/10.1007/s11237-014-9370-x
  10. Lakowicz J.R. Principles of Fluorescence Spectroscopy, New York: Springer, 2006. https://doi.org/10.1007/978-0-387-46312-4
  11. Hong C., Lee J., Zheng H. et al. Nanoscale Res. Lett., 2011, 6, No 1: 321. https://doi.org/10.1186/1556-276X-6-321