To some questions of a polynomial interpolation in Euclidean spaces

1Kashpur, OF
2Khlobystov, VV
1Taras Shevchenko National University of Kyiv
2Institute of Mathematics of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2016, 10:10-14
https://doi.org/10.15407/dopovidi2016.10.010
Section: Mathematics
Language: Ukrainian
Abstract: 

The conditions of invariant solvability and uniqueness of a solution of the interpolation problem for a many-variable
function under the uncertainty are obtained.

Keywords: Euclidean space, Hilbert space, interpolation polynomial, invariance of a solution, operator
References: 
  1. Makarov V.L., Khlobystov V.V. Foundations of polynomial operator interpolation theory, Kyiv: Institute of Mathematics of the NAS of Ukraine, 1998 (in Russian).
  2. Makarov V.L., Khlobystov V.V., Yanovich L.A. Interpolation of operators, Kyiv: Nauk. Dumka, 2000 (in Russian).
  3. Makarov V.L., Khlobystov V.V., Yanovich L.A. Methods of operator interpolation, Kyiv: Institute of Mathematics of the NAS of Ukraine, 2010.
  4. Kashpur O.F., Khlobystov V.V. J. Comput. Appl. Math., 2015, No 2: 8-14.
  5. Chapko R., Babenko C., Khlobystov V., Makarov V. Int. J. Comput. Math., 2014, 91, Iss. 8: 1673-1682. https://doi.org/10.1080/00207160.2013.858809
  6. Gikhman I.I., Skorokhod A.V. Theory of stochastic processes, Moscow: Nauka, 1971 (in Russian).
  7. Yegorov A.D., Sobolevsky P.I., Yanovich L.A. Approximate methods for computation of continual integrals, Minsk: Nauka i Tehnika, 1985 (in Russian).
  8. Berezin I.S., Zhidkov N.P. Methods of computations, Vol. 1, Moscow: Fizmatgiz, 1962 (in Russian).
  9. Babenko K.I. Foundations of numerical analysis, Moscow; Izhevsk: RC "Regular and chaotic dynamics", 2002 (in Russian).