Hormesis effect of UV-S irradiation on pigment complex and antioxidant enzymes of cells in leaves of Pisum sativum L.

TitleHormesis effect of UV-S irradiation on pigment complex and antioxidant enzymes of cells in leaves of Pisum sativum L.
Publication TypeJournal Article
Year of Publication2016
AuthorsMikhyeyev, AN, Zhuk, VV, Ovsyannikova, LG, Grodzinsky, DM
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2016.11.099
Issue11
SectionBiology
Pagination99-103
Date Published11/2016
LanguageUkrainian
Abstract

The hormesis effect of UV-C irradiation on pigments, endogenous hydrogen peroxide content, and antioxidant enzyme activity of pea leaves is studied. It is established that, after the irradiation of plants by an adapted dose of UV-C, the level of endogenous H2O2 decreases. Determination of the activity of ascorbate peroxidase and catalase has established the stimulation of antioxidant enzymes after the action of UV-C. The chlorophyll content in leaves after the effect of adaptive UV-C radiation is stabilized and subsequently restored. It is shown that UV-C irradiation on pea leaves in an adaptive dose increases the tolerance of plants to the repeated UV-C irradiation.

Keywordsantioxidant enzymes, hormesis, pigments, U-C irradiation
References: 
  1. Grodzinsky D.M. Adaptive strategies of plant physiological processes, Kiev: Naukova Dumka, 2013 (in Russian).
  2. Shinkle J.R., Atkins A.K., Humphrey E.E., Rodgers Ch.W., Wheeler S.L., Barnes P.W. Physiol. Plant., 2004, 120: 240—248. doi: https://doi.org/10.1111/j.0031-9317.2004.0237.x, PMid:15032858
  3. Shinkle J.R., Derickson D.L., Barnes P.W. Photochem. Photobiol., 2005, 81: 1069—1074. doi: https://doi.org/10.1562/2005-01-10-RA-411, PMid:15960589
  4. Shinkle J.R., Edwards M.C., Koenig A., Shaltz A., Barnes P.W. Physiol. Plant., 2010, 138: 113—121. doi: https://doi.org/10.1111/j.1399-3054.2009.01298.x, PMid:20070846
  5. Gao C., Xing D., Li L., Zhang L. Planta, 2008, 227: 755—767. doi: https://doi.org/10.1007/s00425-007-0654-4, PMid:17972096
  6. He R., Drury G.E., Rotary V.J., Gordon A., Willer M., Farzaneh T., Woltering E.J., Gallois P. J. Biol. Chem., 2008, 283: 774—783. doi: https://doi.org/10.1074/jbc.M704185200, PMid:17998208
  7. Mikhyeyev A.N. Hyperadaptation. Stimulation of onthogenetic plant adaptation— Kiev: Phytosociocentr, 2015 (in Russian).
  8. Grodzinsky A.M., Grodzinsky D.M. Short reference book of plant physiology Kiev: Naukova Dumka, 1973 (in Russian). PMid:4798584
  9. Chen L.M., Kao C.H. Bot. Bull. Acad. Sin., 1999, 40: 283—287.
  10. Rios-Gonzalez K., Erdei L., Lips S.H. Plant Sci., 2002, 162: 923—930. doi: https://doi.org/10.1016/S0168-9452(02)00040-7
  11. Upadhyaya A., Sankhla D., Davis T.D., Sankhla N., Smith B.N. J. Plant Physiol., 1985, 121: 453—461. doi: https://doi.org/10.1016/S0176-1617(85)80081-X
  12. Nakano Y., Asada K. Plant Cell Physiol, 1981, 22, No 5: 867—880.
  13. Lichtethaler H.K. Methods Enzymol., 1987, 148: 350—382. doi: https://doi.org/10.1016/0076-6879(87)48036-1