Thermal-shock alkali activation — a new method of the preparation of nanoporous carbon adsorbents

1Kucherenko, VO
1Tamarkina, Yu.V
1Popov, AF
1L. M. Litvinenko Institute of Physical-Organic and Coal Chemistry of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2016, 12:74-81
https://doi.org/10.15407/dopovidi2016.12.074
Section: Chemistry
Language: Ukrainian
Abstract: 

A new method for the preparation of nanoporous adsorbents from brown coals impregnated by alkalis MON (M = Li, Na, K) which combines a heat shock (800 °C) and the following isothermal holding is proposed. Varying the hol ding time (0—60 min) and the weight MOH/coal ratio (0.2—1.0 g/g) allows one to purposefully change the characteristics of a porous structure. The pore-forming activity increases in the row LiOH < NaOH < KOH. The heat shock and the holding (5 min) provide the basic (∼2/3) development of nanopores and determine the ratio of different size pores. The best adsorbent is characterized by a specific surface area of 1700 m2/g, total pore volume of 1.00 cm3/g, micropore volume of 0.71 cm3/g, and subnanopore volume of 0.42 cm3/g. This work is focused on the preparation of highly porous carbon materials for supercapacitors.

Keywords: alkali activation, brown coal, nanoporous adsorbents
References: 
  1. Conway B.E. Electrochemical supercapacitors — scientific fundamentals and technological applications, New York: Kluwer, 1999.
  2. Fuertes A.B., Lota G., Centeno T.A., Frackowiak E. Electrochim. Acta, 2005, 50: 2799—2805. doi: https://doi.org/10.1016/j.electacta.2004.11.027
  3. Gao P.-C., Tsai W.-Y., Daffos B., Taberna P.-L., Pérez C. R., Gogotsi Y., Simon P., Favier F. Nano Energy, 2015, 12: 197—206. doi: https://doi.org/10.1016/j.nanoen.2014.12.017
  4. Gonzalez A., Goikoleva E., Barrena J.A., Mysyk R. Renew. Sust. Energy Rev., 2016, 58: 1189—1206. doi: https://doi.org/10.1016/j.rser.2015.12.249
  5. Li J., Cheng X., Shashurin A., Keidar M. Graphene, 2012, 1: 1—3. doi: https://doi.org/10.4236/graphene.2012.11001
  6. Xing B.-L., Guo H., Chen L.-J., Chen Z.-F., Zhang C.-X., Huang G.-X., Xie W., Yu J.-L. Fuel Process. Technol., 2015, 138: 734—742. doi: https://doi.org/10.1016/j.fuproc.2015.07.017
  7. Zhao X.-Y., Huang S.-S., Cao J.-P., Xi S.-C., Wei X.-Y., Kamamoto J., Takarada T. J. Anal. Appl. Pyrol., 2014, 105: 116—121. doi: https://doi.org/10.1016/j.jaap.2013.10.010
  8. Saranchuk V.I., Oshovsky V.V., Vlasov G.O. Chemistry and physics of fossil fuels, Donetsk: Skhidnyi vy davnychyi dim, 2003 (in Ukrainian).
  9. Kucherenko V.A., Zubova T.I. Zhurnal obschey himii, 1995, 65, No 8: 1256—1264 (in Russian).
  10. Kucherenko V.A., Shendrik T.G., Tamarkina Yu.V., Mysyk R.D. Carbon, 2010, 48: 4556—4558. doi: https://doi.org/10.1016/j.carbon.2010.07.027
  11. Tamarkina Yu.V., Kolobrodov V.G., Kucherenko V.A., Shendrik T.G. Solid Fuel Chemistry, 2009, 43: 233—237. doi: https://doi.org/10.3103/S0361521909040090
  12. Tamarkina Yu.V., Shendrik T.G. Ecologiya i promyishlennost, 2010, No 4: 45—48 (in Russian).
  13. Tamarkina Yu.V., Kucherenko V.A. Shendrik T.G. Solid Fuel Chemistry, 2014, 48: 251—259. doi: https://doi.org/10.3103/S0361521914040119