Stress concentration near a corner point of the interfase in the presence of small-scale interfacial shear cracks propagating from it

1Nazarenko, VM, 1Kipnis, AL
1S.P. Timoshenko Institute of Mechanics of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2016, 12:29-35
https://doi.org/10.15407/dopovidi2016.12.029
Section: Mechanics
Language: Russian
Abstract: 

The symmetric problem of composite fracture mechanics on the elastic equilibrium of a piecewice homogeneous isotropic plane with the in the form of the sides of an angle, which contains the interfacial lines of rupture of a tangential displacement at the corner point, is considered. An exact solution of the problem is constructed by the Wiener — Hopf method. Basing on this solution, the stress behavior near the corner point of the interface in the presence of small-scale interfacial shear cracks propagating from it, is investigated.

Keywords: composites fracture mechanics, corner point, interfacial shear crack, stress concentration, Wiener — Hopf method
References: 
  1. Savruk M.P. Stress intensity factors in the bodies with cracks, Kiev: Nauk. Dumka, 1988 (in Russian).
  2. Keer L.M., Mendelsohn D.A., Achenbach J.D. Int. J. Solids and Struct., 1977, 13, No 7: 615-623. doi: https://doi.org/10.1016/0020-7683(77)90044-0
  3. Ouchterlony F. Int. J. Eng. Sci., 1977, 15, No 2: 109-116. doi: https://doi.org/10.1016/0020-7225(77)90026-X
  4. Muki R., Westmann R.A. J. Elast., 1974, 4, No 3: 173-186. doi: https://doi.org/10.1007/BF00049263
  5. Erdogan F., Gupta G.D. Int. J. Eng. Sci., 1976, 14, No 2: 155-164. doi: https://doi.org/10.1016/0020-7225(76)90084-7
  6. Nekislykh K., Ostryk V. Eng. Sci., 2010, No 1: 8-13 (in Ukraine).
  7. Panasyuk V.V., Andrejkiv A.E., Parton V.Z. Fracture mechanics basis, Kiev: Nauk. Dumka, 1988 (in Russian).
  8. Guz A.N., Guz I.A., Men'shikov A.V., Men'shikov V.A. Int. Appl. Mech., 2013, 49, No 1: 1-61. doi: https://doi.org/10.1007/s10778-013-0551-4
  9. Guz A.N. Int. Appl. Mech., 2014, 50, No 1: 1-57. doi: https://doi.org/10.1007/s10778-014-0609-y
  10. Bogdanov V.L., Guz A.N., Nazarenko V.M. Int. Appl. Mech., 2015, 51, No 1: 64-84. doi: https://doi.org/10.1007/s10778-015-0673-y
  11. Bogdanov V.L., Guz A.N., Nazarenko V.M. Int. Appl. Mech., 2015, 51, No 5: 489-560. doi: https://doi.org/10.1007/s10778-015-0710-x
  12. Nobl B. Using of the Wiener — Hopf method for solving the partial derivative equations, Moscow: Izdatelstvo Inostr. Lit., 1962 (in Russian).
  13. Uflyand Ya. S. Integral transformations in the theory of elasticity problems, Leningrad: Nauka, 1967 (in Russian).
  14. Cherepanov G.P. Mechanics of brittle fracture, New York.: McGraw-Hill, 1979.
  15. Nazarenko V.M., Kipnis A.L. Int. Appl. Mech., 2015, 51, No 4: 443-448. doi: https://doi.org/10.1007/s10778-015-0705-7