Nature of the chemical bond from the point of view of the degree of overlapping of electron shells for ions, atoms, and molecules

1Zhyganiuk, IV
1Institute of Environmental Geochemistry of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2016, 12:36-43
https://doi.org/10.15407/dopovidi2016.12.036
Section: Physics
Language: Ukrainian
Abstract: 

A physical criterion for covalent, ionis, and hydrogen bonds is constructed. The overlapping degree Δ for electron shells in compounds and complexes with covalent and ionic bonds is analyzed. It is shown that the density eΔ of the interaction energy per unit interval for ionic compounds is approximately more by the order of magnitude in comparison with that for covalent ones. This means that eΔ can serve as an adequate criterion for the description of the bond type. Analyzing the water dimer properties, it is shown that the value of eΔ for them takes the same order of magnitude as for halogenides of alkaline metals. At the same time, the overlapping degree for electron shells of water molecules forming a dimer in rarefied water vapor, Δ = 0.01, is close to that for an artificial instable molecule Ne2. These facts testify to the electrostatic character of the intermolecular interaction between water molecules belonging to a dimer with the main contribution given by the dipole-dipole forces.

Keywords: density of the interaction energy per unit interval, hydrogen bonds, overlapping degree for electron shells, physical criterion for covalent and ionic bonds
References: 
  1. Zhyganiuk I.V., Malomuzh M.P. Ukr. J. Phys. 2015, 60, No 9: 960-974 (in Ukrainian). doi: https://doi.org/10.15407/ujpe60.09.0960
  2. Antonchenko V.Ya., Davydov A.S., Il'in V.V. Fundamentals of Physics of Water, Kiev: Naukova Dumka, 1991 (in Russian).
  3. Poltev V.I., Grokhlina T.A., Malenkov G.G. J. Biomolec. Struct. Dynam., 1984, 2, No 2: 413-429. doi: https://doi.org/10.1080/07391102.1984.10507576, PMid:6400943
  4. Arunan E., Desiraju G.R., Klein R.A., Sadlej J., Scheiner S., Alkorta I., Clary D.C., Crabtree R.H., Dannenberg J.J., Hobza P., Kjaergaard H.G., Legon A.C., Mennucci B., Nesbitt D. J. Pure Appl. Chem., 2011, 83, No 8: 1619-1636. doi: https://doi.org/10.1351/PAC-REP-10-01-01
  5. Arunan E., Desiraju G.R., Klein R.A., Sadlej J., Scheiner S., Alkorta I., Clary D.C., Crabtree R.H., Dannenberg J. J., Hobza P., Kjaergaard H.G., Legon A.C., Mennucci B., Nesbitt D. J. Pure Appl. Chem., 2011, 83, No 8: 1637-1641. doi: https://doi.org/10.1351/PAC-REC-10-01-02
  6. Fulton R.L., Perhacs P. J. Phys. Chem. A., 1998, 102, No 45: 9001-9020. doi: https://doi.org/10.1021/jp9821228
  7. Dolgushin M.D., Pinchuk V.M. Theoret. Chim. Acta, 1977, 45, No 3: 157-165. doi: https://doi.org/10.1007/BF02401396
  8. Lide D.R., Haynes W.M. CRC handbook of chemistry and physics, Boca Raton, Fl: CRC, 2009. PMid:19903860
  9. Makhlaichuk P.V., Malomuzh M.P., Zhyganiuk I.V. Ukr. J. Phys., 2013, 58, No 3: 278-288. doi: https://doi.org/10.15407/ujpe58.03.0278
  10. Coulson C.A. Valence, London: Oxford Univ. Press, 1961. PMCid:PMC1205691
  11. Haaland A. Molecules and Models : The molecular structures of main group element compounds, Oxford: Oxford University Press, 2008. doi: https://doi.org/10.1093/acprof:oso/9780199235353.001.0001
  12. House J.E. Inorganic chemistry, San Diego: Academic Press, 2012.