Protection of groundwater against pollution by uranium compounds using permeable reactive barriers

1Kornilovych, BYu., 2Koshyk, YI, 3Kovalchuk, IA, 3Khlopas, OO, 3Bashchak, OE
1National Technical University of Ukraine "Kyiv Polytechnic Institute"
2UkrR&D Institute for Industrial Technology, Zhovti Vody
3Institute for Sorption and Problems of Endoecology of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2016, 3:113-120
https://doi.org/10.15407/dopovidi2016.03.113
Section: Ecology
Language: Ukrainian
Abstract: 

Hydrogeologic and geochemical conditions in a vicinity of the large uranium mine tailings storage facility (TSF) in the Zhovti Vody town are characterized to provide the data to locate, design, and install a permeable reactive barrier to treat groundwater contaminated by leachate infiltrating from the TSF. The effectiveness of three different permeable reactive materials are investigated: zero-valent iron, phosphate material, and sulphate-reducing bacteria. In the pilot permeable reactive barrier (PRB) installation, separate rows of cylinders were filled with each of the three permeable reactive materials, and the sampling was conducted within and around the rows of reactive cylinders. The PRB was installed in October–November 2011. Key sampling parameters included field parameters, inorganic analytes, and contaminants of concern (radionuclides and heavy metals). Groundwater levels were measured throughout the study. The results of studies demonstrate the effectiveness of zero-valent iron for remediating uranium-contaminated groundwater, when utilized in a PRB.

Keywords: groundwater, microbiological reduction, permeable reactive barrier, uranium, zero valent iron
References: 
  1. Extraction and processing of uranium ores in Ukraine, Ed. by A.P. Chernov, Kyiv: ADEF Ukraine, 2001 (in Russian).
  2. Landa E. R. J. Environ. Radioact., 2004, No 77: 1–27. https://doi.org/10.1016/j.jenvrad.2004.01.030
  3. Kornilovych B.Yu., Sorokin O. G., Pavlenko V. M., Koshyk Yu. Y. Environmental protection technology in uranium mining and processing industry, Kyiv, 2011 (in Ukrainian).
  4. Blowes D. W., Ptacek C. J., Benner S. G. et al. J. Contam. Hydrol., 2000, 45: 123–137. https://doi.org/10.1016/S0169-7722(00)00122-4
  5. Interstate Technology & Regulatory Council. Permeable Reactive Barriers: Technology Update. PRB-5, Washington, D. C., 2011.
  6. Weber A., Ruhl A. S., Amos R. T. J. Contam. Hydrol., 2013, 151: 68–82. https://doi.org/10.1016/j.jconhyd.2013.05.001
  7. Merroun M. L., Selenska-Pobell S. J. Contam. Hydrol., 2008, 102: 285–295. https://doi.org/10.1016/j.jconhyd.2008.09.019
  8. Kovalchuk I. A., Khlopas O. O., Kornilovych B.Yu., Gvozdyak P. I., Makovets'kyi O. L. Dopov. Nac. akad. nauk Ukr., 2011, No 10: 175–180 (in Ukrainian).
  9. Kornilovich B., Wireman M., Caruso B., Koshik Y., Pavlenko V., Tobilko V. Centr. Europ. J. Occup. and Environ. Med., 2009, 15, No 1–2: 73–85.
  10. Wireman M., Kornilovich B. Newsletter: International Association of Hydrogeologists. U. S. National Chapter, 2012, 41, No 2: 12–14.
  11. Nabyvanets B. Y., Osadchyi V. I., Osadcha N. M., Nabyvanets Yu. B. Analatical chemistry of surface waters, Kyiv: Nauk. Dumka, 2007 (in Ukrainian).
  12. Cundy A. B., Hopkinson L., Whitby R. L. D. Sci. Total Environ., 2008, 400: 42–51. https://doi.org/10.1016/j.scitotenv.2008.07.002
  13. Morrison S. J., Mushovic P. S., Niesen P. L. Environ. Sci. Technol., 2006, 40: 2018–2024. https://doi.org/10.1021/es052128s
  14. Lloyd J. R., Lovley D. R. Curr. Opin. Biotechnol., 2001, 12: 248–253. https://doi.org/10.1016/S0958-1669(00)00207-X
  15. Zhengji Y. J. Environ. Radioact., 2010, 101: 700–705. https://doi.org/10.1016/j.jenvrad.2010.04.009