An interaction of the copper nanoparticles-ceftriaxone conjugate with protein, lipid, and carbohydrate components of bacterial cell envelope

1Simonov, PV
2Kovalyova, DO
2Busko, TO
2Dmytrenko, OP
2Kulysh, MP
2Zabolotniy, MA
2Kuzmenko, MO
1Chekman, IS
1O.O. Bogomolets National Medical University, Kyiv
2Taras Shevchenko National University of Kyiv
Dopov. Nac. akad. nauk Ukr. 2016, 5:125-131
https://doi.org/10.15407/dopovidi2016.05.125
Section: Medicine
Language: Ukrainian
Abstract: 

A possibility of an interaction of the copper nanoparticles-ceftriaxone conjugate with protein, lipid, and hydrocarbon components of a cell envelope of gram-positive and gram-negative bacteria is studied by the means of quantum-chemical calculations and the optical spectroscopy. It is found out that the positions and half-widths of dipole-allowed optical absorption bands in solutions of the copper nanoparticles-ceftriaxone conjugate with the aforementioned substances are changed. It is shown that the ceftriaxone electronic state is changed because of the intensification of its interaction with components of a cell envelope due to the presence of metal nanoparticles.

Keywords: bacterial cell envelope component, ceftriaxone, conjugate, copper nanoparticles
References: 
  1. Jindal A. K., Pandya K., Khan I. D. Med. J. Armed Forces India, 2015, 71, No 2: 178–181. https://doi.org/10.1016/j.mjafi.2014.04.011
  2. Fair R. J., Tor Y. Perspect. Medicin. Chem., 2014, 6: 25–64.
  3. Bijie H., Kulpradist S., Manalaysay M., Soebandrio A. J. Chemother., 2005, 17, No 1: 3–24.
  4. Duncan C. J., Barr D. A., Seaton R. A. Intern. J. Clin. Pharm., 2012, 34, No 3: 410–417. https://doi.org/10.1007/s11096-012-9637-z
  5. Esposito S., Noviello S., Vanasia A., Venturino P. Clin. Drug Invest., 2004, 24, No 1: 29–39. https://doi.org/10.2165/00044011-200424010-00004
  6. Lamb H. M., Ormrod D., Scott L. J., Figgitt D. P. Drugs, 2002, 62, No 7: 1041–1089. https://doi.org/10.2165/00003495-200262070-00005
  7. Chekman I. S., Ulberg Z. R., Malanchuk V. O., Gorchakova N. O., Zupanets I. A., Shatorna V. F., Bilous S. B., Hruzina T. G., Dybkova S. M., Nahorna O. O., Nebesna T.Yu., Polova Zh. M., Reznichenko L. S., Savenkova O. O., Doroshenko A. M., Pryskoka A. O., Rybachuk A. V., Savchenko D. S., Simonov P. V., Nahorna T. I. Nanoscience, nanobiology, nanopharmacy, Kyiv: Poligraf plus, 2012 (in Ukrainian).
  8. Singh R., Smitha M. S., Singh S. P. J. Nanosci. Nanotechnol., 2014, 14, No 7: 4745–4756. https://doi.org/10.1166/jnn.2014.9527
  9. Fayaz A. M., Girilal M., Mahdy S. A., Somsundar S. S., Venkatesan R., Kalaichelvan P. T. Process Biochem., 2011, 46, No 3: 636–641. https://doi.org/10.1016/j.procbio.2010.11.001
  10. Shah M. R., Ali S., Ateeq M., Perveen S., Ahmed S., Bertino M. F., Ali M. New J. Chem., 2014, 38, No 11: 5633–5640. https://doi.org/10.1039/C4NJ00751D
  11. Ingle A. P., Duran N., Rai M. Appl. Microbiol. Biotechnol., 2014, 98, No 3: 1001–1009. https://doi.org/10.1007/s00253-013-5422-8
  12. Dybkova S. M. Herald of biological and medical problems, 2014, 3, Iss. 3: 279–283 (in Ukrainian).
  13. Chen Z., Meng H., Xing G., Chen C., Zhao Y., Jia G., Wang T., Yuan H., Ye C., Zhao F., Chai Z., Zhu C., Fang X., Ma B., Wan L. Toxicol. Lett., 2006, 163, No 2: 109–120. https://doi.org/10.1016/j.toxlet.2005.10.003
  14. Studer A. M., Limbach L. K., Van Duc L., Krumeich F., Athanassiou E. K., Gerber L. C., Moch H., Stark W. J. Toxicol. Lett., 2010, 197, No 3: 169–174. https://doi.org/10.1016/j.toxlet.2010.05.012