Synthesis of 4,4′-bis(nonafluorobiphenyl-4-oxyphenyl)- 1,4-oxytetrafluorobenzene and ladder spirobisindane-containing polyether on its base

1Tkachenko, IM
1Kobzar, Ya.L
2Kravchenko, VV
1Shekera, OV
1Shevchenko, VV
1Institute of Macromolecular Chemistry of the NAS of Ukraine, Kyiv
2L. M. Litvinenko Institute of Physical-Organic and Coal Chemistry of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2016, 7:100-106
https://doi.org/10.15407/dopovidi2016.07.100
Section: Chemistry
Language: Russian
Abstract: 

A method of synthesis of 4,4′-bis(nonafluorobiphenyl-4-oxyphenyl)-containing monomer with tetrafluorobenzene central unit based on decafluorobiphenyl and 4-[2,3,5,6-tetrafluoro-4-(4-hydroxyphenoxy) phenoxy]phenol is developed. Ladder type aromatic polyether is synthesized by the interaction of the obtained monomer with spiro-bis-catechol 5,5′,6,6′-tetrahydroxy-3,3,3′,3′-tetramethyl-1,1′-spirobisindane. The presence of both rigid dibenzodioxin and spirobisindane fragments (site of contortion) in its structure leads to decreasing the packing density of macromolecular chains that is promising for the regulation of transport properties of polymeric systems.

Keywords: fluorinated poly(arylene ether)s, ladder polymers, perfluorinated fragments, PIM polymers, spirobisindane
References: 
  1. Shevchenko V. V., Tkachenko I. M., Shekera O. V. Polym. Sci. Ser. B., 2010, 52, No 7–8: 408–430. https://doi.org/10.1134/S1560090410070055
  2. Dhara M. G., Banerjee S. Prog. Polym. Sci., 2010, 35, No 8: 1022–1077. https://doi.org/10.1016/j.progpolymsci.2010.04.003
  3. Ghosh A., Banerjee S. e-Polymers, 2014, 14, No 4: 227–257.
  4. Maier G. Prog. Polym. Sci., 2001, 26, No 1: P. 3–65. https://doi.org/10.1016/S0079-6700(00)00043-5
  5. McKeown N. B. ISRN Mater. Sci., 2012, 2012: 513986.
  6. Budd P. M., Bader S. G., Makhseed S., McKeown N. B., Msayib K. J., Tattershall C. E. Chem. Commun, 2004, No 2: 230–231. https://doi.org/10.1039/b311764b
  7. Budd P. M., Makhseed S. M., Ghanem B. S., Msayib K. J., Tattershall C. E., McKeown N. B. Mater. Today, 2004, 7, No 4: 40–46. https://doi.org/10.1016/S1369-7021(04)00188-9
  8. Carta M., Msayib K. J., Budd P. M., McKeown N. B. Org. Lett., 2008, 10, No 13: 2641–2643. https://doi.org/10.1021/ol800573m
  9. Cui Z., Drioli E., Lee Y. M. Prog. Polym. Sci., 2014, 39, No 1: 164–198. https://doi.org/10.1016/j.progpolymsci.2013.07.008
  10. Yampolskii Y. Macromolecules, 2012, 45, No 8: 3298–3311. https://doi.org/10.1021/ma300213b
  11. Du N., Robertson G. P., Song J., Pinnau I., Thomas S., Guiver M. D. Macromolecules, 2008, 41, No 24: 9656–9662. https://doi.org/10.1021/ma801858d
  12. Makhseed S., Samuel J., Bumajdad A., Hassan M. J. Appl. Polym. Sci., 2008, 109, No 4: 2591–2597. https://doi.org/10.1002/app.28372
  13. Kameneva T. M., Malichenko B. F., Sheludko E. V., Pogorelyiy V. K., Sherstyuk A. I., Rozhenko A. B. Zh. organ. khim. 1989, 25, No 3: 576–582.
  14. Song J., Du N., Dai Y., Robertson G. P., Guiver M. D., Thomas S., Pinnau I. Macromolecules, 2008, 41, No 20: 7411–7417. https://doi.org/10.1021/ma801000u