Preparation and properties of silver-containing composites based on melamine-formaldehyde polymer modified with diisocyanate oligomers of different structures

1Tolstov, AL
1Kobrina, LV
2Klymchuk, DA
1Matyushov, VF
1Lebedev, EV
1Institute of Macromolecular Chemistry of the NAS of Ukraine, Kyiv
2M. G. Kholodny Institute of Botany of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2016, 7:107-114
https://doi.org/10.15407/dopovidi2016.07.107
Section: Chemistry
Language: Russian
Abstract: 

Silver-containing composites were prepared via the sorption of silver ions by melamine-formaldehyde polymer (MFP) modified with diisocyanate oligomers. Introducing the modifiers into a structure of MFP improves microphase separation processes and increases the permeability of the matrix and the concentration of coordination active functional groups. Sorption capacity of modified MFP to Ag+ ions reaches 6.5 · 10−2 g/g. Ag-containing nanocomposites obtained are characterized by a heterogeneous structure, increased hydrophilicity, and gradient distribution of silver in a bulk of the polymers.

Keywords: diisocyanate oligomer, melamine-formaldehyde polymer, nanocomposites, properties, silver, structure
References: 
  1. Mark H. F. Encyclopedia of Polymer Science and Technology, New York: John Wiley, 2004.
  2. Pat. 4938955 USA, IC7 A 61 K 31/74. Antibiotic resin composition, R. Niira, T. Yamamoto, M. Uchida, Y. Fukuoka, Publ. 03.07.1990.
  3. Kim S., Kim H.-J. Int. Biodeter. Biodegr., 2006, 57, Iss. 3: 155–162. https://doi.org/10.1016/j.ibiod.2006.02.002
  4. Tolstov A. L., Matyushov V. F., Malanchuk O. N. Theoret. Experim. Chem., 2014, 50, No 3: 179–184 (in Russian). https://doi.org/10.1007/s11237-014-9363-9
  5. Moawed E. A., Zaid M. A. A., El-Shahat M. F. Anal. Lett., 2003, 36: 405–422. https://doi.org/10.1081/AL-120017699
  6. Sivashankar K., Ranganathan A., Pedireddi V. R., Rao C. N. R. J. Mol. Struct., 2001, 559: 41–48. https://doi.org/10.1016/S0022-2860(00)00686-4
  7. Massoud A. A., Langer V. Acta Crystallogr. Sect. C., 2009, 65: m198–m200. https://doi.org/10.1107/S0108270109013110
  8. Yirikoglu H., Gulfen M. Sep. Sci. Technol., 2008, 43, Iss. 2: 376–388. https://doi.org/10.1080/01496390701787305
  9. Abd El-Ghaffar M. A., Abdel-Wahab Z. H., Elwakeel K. Z. Hydrometallurgy, 2009, 96, Iss. 1–2: 27–34. https://doi.org/10.1016/j.hydromet.2008.07.008
  10. Ping H., Zhang M., Li H., Chen Q., Sun C., Zhang T. Food Control, 2012, 23: 191–197. https://doi.org/10.1016/j.foodcont.2011.07.009
  11. Romanov N. M. Plasticheskie massy, 2004, No 2: 3–11 (in Russian).
  12. Tolstov A. L., Zinchenko O. V., Matyushov V. F. Theoret. Experim. Chem., 2013, 51, No 5: 322–327 (in Russian).
  13. Tolstov A. L. Theoret. Experim. Chem., 2013, 49, No 6: 331–353 (in Russian).
  14. Voronov A., Kohut A., Vasylyev S., Peukert W. Langmuir, 2008, 24: 12 587–12 594.
  15. Pastoriza-Santos I., Liz-Marzan L. M. Langmuir, 1999, 15: 948–951. https://doi.org/10.1021/la980984u