Modeling the Bauschinger effect in orthotropic materials with isotropic-kinematic hardening under isothermal and nonisothermal loadings

1Bastun, VN
1Podil’chuk, IYu.
1S.P. Timoshenko Institute of Mechanics of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2016, 7:39-48
https://doi.org/10.15407/dopovidi2016.07.039
Section: Mechanics
Language: Russian
Abstract: 

The model of the Bauschinger effect in the general case of a combined stress state in materials with strain anisotropy, whose hardening is described by the isotropic-kinematic hypothesis, is considered. The model uses the loading surface concept and a graphical-analytical method, which establishes the stress-strain relations under combined loading. As an example, the Bauschinger effect measure is determined numerically in an orthotropic material with variable anisotropy parameters under uniaxial isothermal loading along the anisotropy axes. It is shown that this measure increases with the isotropic hardening fraction.

Keywords: anisotropic materials, Bauschinger effect, isothermal and nonisothermal loadings, isotropic-kinematic hardening
References: 
  1. Gibson M. C., Hameed A., Parker A. P., Hetherington J. G. J. Pressure Vessel Technol., 2006, 128, No 3: 217–222. https://doi.org/10.1115/1.2172964
  2. Bate P. S., Wilson D. V. Acta Metallurgica, 1986, 34, No 6: 1097–1105. https://doi.org/10.1016/0001-6160(86)90220-8
  3. Silva F. S. Int. J. of Fatigue, 2007, 29: 1757–1771. https://doi.org/10.1016/j.ijfatigue.2007.03.012
  4. Buciumeanu M., Palaghian L., Miranda A. A., Silva F. S. Int. J. of Fatigue, 2011, 33, No 2: 145–152. https://doi.org/10.1016/j.ijfatigue.2010.07.012
  5. Ma Q., Levy C., Peri M. J. Pressure Vessel Technol., 2012, 134, No 2: 142–149. https://doi.org/10.1115/1.4005396
  6. Fridman Ya. B. Mechanical properties of metals, Moscow: Mashinostroenie, 1974, Part 2 (in Russian).
  7. Talypov G. B. Plasticity and strength of steel under combined loading, Leningrad: Izd. Leningr. univ., 1968 (in Russian).
  8. Bastun V. N. Strength of materials, 2012, 44, No 1: 1–7 (in Russian). https://doi.org/10.1007/s11223-012-9342-0
  9. Bastun V. N. Dopov. Nac. akad. nauk Ukr., 2013, No 10: 54–63 (in Russian).
  10. Bastun V. N. Zavod. laboratoriya, 1976, No 6: 723–724 (in Russian).
  11. Bastun V. N., Shkaraputa L. M. Strength of materials, 1987, 19, No 6: 785–790 (in Russian). https://doi.org/10.1007/BF01522831
  12. Bastun V. N., Kaminsky A. A. Int. Appl. Mech., 2005, 41, No 10: 1092–1129. https://doi.org/10.1007/s10778-006-0017-z
  13. Il’yushin A. A. Plasticity. General mathematic theory, Moscow: Izd. AN SSSR, 1963 (in Russian).
  14. Ziegler H. A. Quart. Appl. Math., 1959, No 17: 55–65. https://doi.org/10.1090/qam/104405
  15. Umanskii Ya. S., Finkel’shtein B. N., Blanter M. E. a. o. Physical material science, Moscow: Metallurgizdat, 1955 (in Russian).