On the plastic rupture lines at a corner point of the piecewise homogeneous body

1Kaminsky, AA
2Kipnis, LA
2Polischuk, TV
1S.P. Timoshenko Institute of Mechanics of the NAS of Ukraine, Kyiv
2Pavlo Tychyna Uman State Pedagogical University
Dopov. Nac. akad. nauk Ukr. 2016, 7:56-61
https://doi.org/10.15407/dopovidi2016.07.056
Section: Mechanics
Language: Ukrainian
Abstract: 

The symmetric problem of calculation of plastic strips at a corner point of the interface of isotropic media is considered. The plastic strip is modeled by the line of rupture of a tangent displacement. An exact solution of the corresponding problem of elasticity theory is constructed by the Wiener–Hopf method. Basing on this solution, the length and the direction of development of plastic strips are determined.

Keywords: corner point, interface of media, line of rupture of a tangent displacement, plastic strip, Wiener–Hopf method
References: 
  1. Panasyuk V. V., Savruk M. P. Mater. Sci., 1992, No 1: 41–57.
  2. Berezhnitskii L. T., Kundrat N. M. Mater. Sci., 1983, No 6: 538–546.
  3. Dyakon V. N., Kaminskii A. A., Kipnis L. A. Mech. of Solids, 1997, No 3: 100–105.
  4. Kaminskii A. A., Kipnis L. A., Khazin G. A. Int. Appl. Mech., 2002, 38, No 5: 611–616. https://doi.org/10.1023/A:1019766106040
  5. Loboda V. V., Sheveleva A. E. Int. Appl. Mech., 2003, 39, No 5: 566–572. https://doi.org/10.1023/A:1025139625891
  6. Voloshko O. I., Loboda V. V. Bulletin of Taras Shevchenko National Univertsity of Kiev. Series Physics & Mathematics, 2010, No 4: 54–59 (in Russian).
  7. Kaminskii A. A., Dudik M. V., Kipnis L. A. Math. Methods and Physicomech. Fields, 2014, 57, No 4: 95–108 (in Russian).
  8. Kaminsky A. A., Kipnis L. A., Kolmakova V. A. Int. Appl. Mech., 2008, 44, No 10: 1084–1092. https://doi.org/10.1007/s10778-009-0131-9
  9. Dudyk M. V., Dikhtyarenko Yu. V. Mater. Sci., 2014, No 4: 516–526.
  10. Kipnis L. A., Polishchuk T. V. Int. Appl. Mech., 2009, 45, No 2: 159–168. https://doi.org/10.1007/s10778-009-0170-2
  11. Kaminsky A. A., Kipnis L. A., Polishchuk T. V. Int. Appl. Mech., 2012, 48, No 6: 700–709. https://doi.org/10.1007/s10778-012-0546-6
  12. Vitvitskii P. M., Panasyuk V. V., Yarema S.Ya. Strength of Materials, 1973, No 2: 135–151. https://doi.org/10.1007/BF00770282
  13. Noble B. Useng of the Wiener–Hopf method for the solve the Partial derivative equations, Moscow: Izda-vo Inostr. lit., 1962 (in Russian).
  14. Cherepanov G. P. Appl. Math. Mech., 1976, 40, No 4: 666–674. https://doi.org/10.1016/0021-8928(76)90177-5