Hydroxylic protic ionic liquids with two types of basic centers

TitleHydroxylic protic ionic liquids with two types of basic centers
Publication TypeJournal Article
Year of Publication2016
AuthorsShevchenko, VV, Gumennaya, MA, Stryutsky, AV, Trachevsky, VV, Klymenko, NS, Korolovych, VF, Ledin, PA, Tsukruk, VV
Abbreviated Key TitleDopov. Nac. akad. nauk Ukr.
DOI10.15407/dopovidi2016.09.099
Issue9
SectionChemistry
Pagination99-109
Date Published9/2016
LanguageRussian
Abstract

1-((3-(1H-imidazol-1-yl)propyl)amino)-3-butoxypropan-2-ol comprising two basic centers of different basicities, which are imidazole and aliphatic amine, is obtained by the reaction of butyl glycidyl ether with 1-(3-aminopropyl)imidazole. The further partial (50 %) or complete neutralization of the obtained compound resulted in protic ionic liquids (IL) containing hydroxyl groups. The identification of synthesized compounds is carried out by using IR and 1H NMR spectroscopy. It is found that the formation of multicenter hydrogen bonds with the rapid proton migration between these centers according to the mechanism of intramolecular and intermolecular transfer in bulk of the IL containing partially neutralized main centers occurs. The obtained compounds are of interest as monomers for the synthesis of macromolecular ionic liquids.

Keywordsbasicity, extent of neutralization, ionic liquids, proton exchange
References: 
  1. Hayes R., Warr G.G., Atkin R. Chem. Rev., 2015, 115, Iss. 13: 6357–6426. https://doi.org/10.1021/cr500411q
  2. Ferraz R., Prudêncio C., Vieira M., Fernandes R., Noronha J.P., Petrovski Z. Organic. Chem. Curr. Res., 2015, 4, Iss.1: E 139.
  3. Wojnarowska Z., Paluch M. J. Phys. Condens. Matter, 2015, 27, Iss. 7: 073202. https://doi.org/10.1088/0953-8984/27/7/073202
  4. Shaplov A. S., Ponkratov D. O., Vlasov P. S., Lozinskaya E. I., Komarova L. I., Malyshkina I. A., Vidal F., Nguyen G. T. M., Armand M., Wandrey C., Vygodskii Ya. S. Polym. Sci. Ser. B, 2013, 55, Iss. 3–4: 122–38. https://doi.org/10.1134/S1560090413030044
  5. Green O., Grubjesic S., Lee S., Firestone M.A. J. Macromol. Sci., Polym. Rev., 2009, 49, Iss. 4: 339–360. https://doi.org/10.1080/15583720903291116
  6. Yuan J., Meccerreyes D., Antonietti M. Prog. Polym. Sci., 2013, 38, Iss. 7: 1009–1036. https://doi.org/10.1016/j.progpolymsci.2013.04.002
  7. Reddy P. N., Padmaja P., Reddy B. V. S., Rambabu G. RSC Advances, 2015, 5: 51035–51054. https://doi.org/10.1039/C5RA08625F
  8. Ratti R. Advances in Chemistry, 2014, 2014: 729842, doi: 10.1155/2014/729842. https://doi.org/10.1155/2014/729842
  9. He X., Chan T. H. Org. Lett., 2007, 9, Iss. 14: 2681–2684. https://doi.org/10.1021/ol0708875
  10. Wang L., Li H., Li P. Tetrahedron, 2009, 65, Iss. 1: 364–368. https://doi.org/10.1016/j.tet.2008.10.042
  11. Shevchenko V. V., Stryutsky A. V., Klymenko N. S., Gumenna M. A., Fomenko A. A., Bliznyuk V.N., Trachevsky V. V., Davydenko V. V., Tsukruk V. V. Polymer, 2014, 55, Iss. 16: 3349–3359. https://doi.org/10.1016/j.polymer.2014.04.020
  12. Shevchenko V. V., Stryutsky A. V., Klymenko N. S., Gumennaya M. A., Fomenko A. A., Trachevsky V. V., Davydenko V. V., Bliznyuk V. N., Dorokhin A. V. Polym. Sci. Ser. B, 2014, 56, Iss 5: 583–592. https://doi.org/10.1134/S156009041405011X
  13. Xu W., Ledin P.A., Shevchenko V.V., Tsukruk V.V. ACS Appl. Mater. Interfaces, 2015, 7, Iss. 23: 12570–12596. https://doi.org/10.1021/acsami.5b01833
  14. Shevchenko V. V., Stryutskii A. V., Klimenko N. S. Theor. Exp. Chem., 2011, 47, Iss. 2: 67–92. https://doi.org/10.1007/s11237-011-9187-9
  15. Shevchenko V. V., Stryutskii A. V., Bliznyuk V. N., Klimenko N. S., Shevchuk A. V., Lysenkov E. A., Gomza Yu. P. Polym. Sci. Ser. B, 2014, 56, Iss 2: 216–228. https://doi.org/10.1134/S1560090414020158