Grid and cloud computing for the modeling of the motion of a magnetized assymmetric body in an external magnetic field

1Lyashko, SI
2Zub, SI
3Zub, SS
4Lyashko, NI
5Chernyavskiy, AYu.
1Taras Shevchenko National University of Kyiv
2NSC Institute of Metrology, Kharkiv
3H. S. Skovoroda Kharkiv National Pedagogical University
4V.M. Glushkov Institute of Cybernetics of the NAS of Ukraine, Kyiv
5National Aerospace University "KhAi"
Dopov. Nac. akad. nauk Ukr. 2016, 9:29-36
https://doi.org/10.15407/dopovidi2016.09.029
Section: Information Science and Cybernetics
Language: Russian
Abstract: 

The combination of the Monte Carlo method with Grid and cloud computing for parallel computations allows us to carry out the extensive study of a stability of quasiperiodic motions of a magnetic asymmetric rigid body in an external magnetic field. The use of quaternion variables in the description of the Hamiltonian dynamics of the asymmetric rigid body substantially increases the efficiency of the numerical simulation.

Keywords: asymmetric top, Grid technology, Orbitron, quasiorbit
References: 
  1. Grigoryeva L.V., Ortega J-P., Zub S.S. J. Geometric Mechanics, 2014, 6 , No 3: 373–415. https://doi.org/10.3934/jgm.2014.6.373
  2. Zub S.S., Zub S.I. Cornell Univ. Library, 2015: 1502.04674v1.
  3. Zub S.S. Proceedings of Science, 2008, PoS(ACAT08)116.
  4. Zub S.S. Phys. D: Nonlinear Phenomena, 2014,275C: 67–73. https://doi.org/10.1016/j.physd.2014.02.007
  5. Borisov A.V., Mamaev I.S. Regular and Chaotic Dynamics, 1997, No 3: 72–89 (in Russian).
  6. Zub S.S., Zub S.I. Bull. of Taras Shevchenko Nat. Univ. of Kiev, 2013, No 2: 17–24 (in Ukrainian).
  7. Zub S.S., Zub S.I. Bull. of Taras Shevchenko Nat. Univ. of Kiev, 2013, No 4: 108–113 (in Ukrainian).
  8. Zub S.S., Zub S.I. Bull. of Taras Shevchenko Nat. Univ. of Kiev, 2014, No 3: 111–117 (in Ukrainian).
  9. Zub S.S., Zub S.I. Cornell Univ. Library, 2015: 1512.01703.
  10. Salamin E. Working Paper of Stanford University, Stanford, 1979: 1–9.
  11. Zub S.S., Lyashko V.S., Lyashko S.I. J. of Computational and Appl. Math., 2012, No 1: 122–134 (in Russian).
  12. Patrick G.W. J. Geom. Phys., 1992, No 9: 111–119. https://doi.org/10.1016/0393-0440(92)90015-S
  13. Dullin H.R. Regular and chaotic dynamics, 2004, No 3: 255–264. https://doi.org/10.1070/RD2004v009n03ABEH000279
  14. Tange O. The USENIX Magazine, 2011, 36, No 1: 42–47.
  15. Fernandez-del-Castillo E., Scardaci D., Lopez Garcia A. Procedia Computer Science, 2015, No 68: 196–205. https://doi.org/10.1016/j.procs.2015.09.235