Application of the Boltzmann lattice method to the analysis of nanofluid flow in a curved channel with radial irregularities of the temperature and the concentration of nanoparticles

1Avramenko, AA
1Tyrinov, AI
1Dmytrenko, NP
1Kravchuk, OV
1Institute of Engineering Thermophysics of the NAS of Ukraine, Kyiv
Dopov. Nac. akad. nauk Ukr. 2017, 1:52-59
Section: Heat Physics
Language: Ukrainian

The nanofluid flow in a curved channel formed by two concentric cylindrical surfaces is studied. The flow is caused by a constant azimuthal pressure gradient. The hydrodynamic and thermal characteristics of the flow are investigated. The influence of various factors on the centrifugal instability is studied as well.

Keywords: centrifugal instability, curvilinear channel, heat-mass transfer, nanofluid
  1. Avramenko A.A., Shevchuk I.V., Tyrinov A.I., Blinov D.G. Appl. Therm. Eng., 2014, 73, Iss. 1: 391—398.
  2. Avramenko A.A., Shevchuk I.V., Tyrinov A.I., Blinov D.G. Int. J. Heat Mass Tran., 2015, 82: 316—324.
  3. Avramenko A.A., Shevchuk I.V., Tyrinov A.I., Blinov D.G. Int. J. Therm. Sci., 2015, 92: 106—118.
  4. Singh A.K., Raykar V.S. Colloid Polym. Sci., 2008, 286, Iss. 14: 1667—1673.
  5. Walowit J., Tsao S., Diprima R. J. Appl. Mech., 1964, 31, No 4: 585—593.
  6. Mutabazi I., Guillerm R., Prigent A., Lepiller V., Malik S. Flow instabilities in a vertical differentially rotating cylindrical annulus with a radial temperature gradient, EUROMECH Colloquium 525, 2011,
  7. Auser M., Busse F., Gangler, E. Eur. J. Mech., 1996, 15, No 4: 605—618.
  8. Ali M.E., Weidman P.D. J. Fluid Mech., 1990, 220: 53—84.
  9. Guillerm R., Kang C., Savaro C., Lepiller V. Phys. Fluids., 2015, No 27: 094101.
  10. Joni I.M., Panatarani C., Hidayat D., Setianto, Wibawa B.M., Rianto A., Thamrin H. AIP Conf. Proc., 2013, 1554: 20—26, doi; 10.1063.1.4820275.
  11. Barrios G., Rechtman R., Rojas J., Tovar R. J. Fluid Mech., 2005, 522: 91—100.
  12. Jung M., Choi C., Oh J. J. Nanosci. Nanotechnol., 2011, 11, No 1: 507—510.